Patents by Inventor Abner Bello

Abner Bello has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10931143
    Abstract: Rechargeable wafer carrier systems and methods are provided. A rechargeable wafer carrier system includes, for instance, a housing for holding at least one wafer and at least one electronics system therein, a rechargeable power source operably connected to the housing for powering the at least one electronics system, and a charging interface for receiving a supply of power for charging the rechargeable power source. The housing may be configured for transport within an automated material handling system. Also provided are methods of charging a rechargeable wafer carrier system, which includes, for instance, providing a rechargeable wafer carrier system having at least one electronics system and a rechargeable power source, operably connecting the rechargeable wafer carrier system to a charging base, and supplying power from the charging base to the rechargeable power source.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: February 23, 2021
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Abner Bello, Stephanie Waite, William J. Fosnight
  • Patent number: 10818528
    Abstract: Self-contained metrology wafer carrier systems and methods of measuring one or more characteristics of semiconductor wafers. The wafer carrier system may include a housing configured for transport within the automated material handling system. A support is configured to support a semiconductor wafer within a housing. A metrology system is disposed within the housing. The metrology system is operable to measure at least one characteristic of the wafer. The metrology system may include a sensing unit and a computing unit operably connected to the sensing unit.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: October 27, 2020
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Abner Bello, Stephanie Waite, William J. Fosnight, Thomas Beeg
  • Patent number: 10343253
    Abstract: Methods, non-transitory computer readable media, and systems are provided for detecting an endpoint of a chemical mechanical planarization (CMP) process on a semiconductor substrate. The method comprises generating a reference signal, generating a first signal with which to control a CMP system, generating a second signal using a combination of the first signal and the reference signal, commanding the CMP system with the second signal, generating a response signal that indicates an operational characteristic of the CMP system that is responsive to the second signal and a friction property of the semiconductor substrate, and filtering the response signal using the reference signal to determine the endpoint of the CMP process.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: July 9, 2019
    Assignee: GLOBALFOUNDRIES, INC.
    Inventors: Abner Bello, Michael Wedlake
  • Publication number: 20190148180
    Abstract: Self-contained metrology wafer carrier systems and methods of measuring one or more characteristics of semiconductor wafers. The wafer carrier system may include a housing configured for transport within the automated material handling system. A support is configured to support a semiconductor wafer within a housing. A metrology system is disposed within the housing. The metrology system is operable to measure at least one characteristic of the wafer. The metrology system may include a sensing unit and a computing unit operably connected to the sensing unit.
    Type: Application
    Filed: January 15, 2019
    Publication date: May 16, 2019
    Inventors: Abner Bello, Stephanie Waite, William J. Fosnight, Thomas Beeg
  • Patent number: 10242895
    Abstract: A self-contained metrology wafer carrier systems and methods of measuring one or more characteristics of semiconductor wafers are provided. A wafer carrier system includes, for instance, a housing configured for transport within the automated material handling system, the housing having a support configured to support a semiconductor wafer in the housing, and a metrology system disposed within the housing, the metrology system operable to measure at least one characteristic of the wafer, the metrology system comprising a sensing unit and a computing unit operably connected to the sensing unit. Also provided are methods of measuring one or more characteristics of a semiconductor wafer within the wafer carrier systems of the present disclosure.
    Type: Grant
    Filed: January 22, 2018
    Date of Patent: March 26, 2019
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Abner Bello, Stephanie Waite, William J. Fosnight, Thomas Beeg
  • Publication number: 20180143077
    Abstract: A self-contained metrology wafer carrier systems and methods of measuring one or more characteristics of semiconductor wafers are provided. A wafer carrier system includes, for instance, a housing configured for transport within the automated material handling system, the housing having a support configured to support a semiconductor wafer in the housing, and a metrology system disposed within the housing, the metrology system operable to measure at least one characteristic of the wafer, the metrology system comprising a sensing unit and a computing unit operably connected to the sensing unit. Also provided are methods of measuring one or more characteristics of a semiconductor wafer within the wafer carrier systems of the present disclosure.
    Type: Application
    Filed: January 22, 2018
    Publication date: May 24, 2018
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Abner BELLO, Stephanie WAITE, William J. FOSNIGHT, Thomas BEEG
  • Patent number: 9911634
    Abstract: A self-contained metrology wafer carrier systems and methods of measuring one or more characteristics of semiconductor wafers are provided. A wafer carrier system includes, for instance, a housing configured for transport within the automated material handling system, the housing having a support configured to support a semiconductor wafer in the housing, and a metrology system disposed within the housing, the metrology system operable to measure at least one characteristic of the wafer, the metrology system comprising a sensing unit and a computing unit operably connected to the sensing unit. Also provided are methods of measuring one or more characteristics of a semiconductor wafer within the wafer carrier systems of the present disclosure.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: March 6, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Abner Bello, Stephanie Waite, William J. Fosnight, Thomas Beeg
  • Publication number: 20180048169
    Abstract: Rechargeable wafer carrier systems and methods are provided. A rechargeable wafer carrier system includes, for instance, a housing for holding at least one wafer and at least one electronics system therein, a rechargeable power source operably connected to the housing for powering the at least one electronics system, and a charging interface for receiving a supply of power for charging the rechargeable power source. The housing may be configured for transport within an automated material handling system. Also provided are methods of charging a rechargeable wafer carrier system, which includes, for instance, providing a rechargeable wafer carrier system having at least one electronics system and a rechargeable power source, operably connecting the rechargeable wafer carrier system to a charging base, and supplying power from the charging base to the rechargeable power source.
    Type: Application
    Filed: August 10, 2016
    Publication date: February 15, 2018
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Abner BELLO, Stephanie WAITE, William J. FOSNIGHT
  • Publication number: 20170372924
    Abstract: A self-contained metrology wafer carrier systems and methods of measuring one or more characteristics of semiconductor wafers are provided. A wafer carrier system includes, for instance, a housing configured for transport within the automated material handling system, the housing having a support configured to support a semiconductor wafer in the housing, and a metrology system disposed within the housing, the metrology system operable to measure at least one characteristic of the wafer, the metrology system comprising a sensing unit and a computing unit operably connected to the sensing unit. Also provided are methods of measuring one or more characteristics of a semiconductor wafer within the wafer carrier systems of the present disclosure.
    Type: Application
    Filed: June 27, 2016
    Publication date: December 28, 2017
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Abner BELLO, Stephanie WAITE, William J. FOSNIGHT, Thomas BEEG
  • Patent number: 9419137
    Abstract: A method of straining fins of a FinFET device by using a stress memorization film and the resulting device are provided. Embodiments include providing a plurality of bulk Si fins, the plurality of bulk Si fins having a recessed oxide layer therebetween; forming a stress memorization layer over the plurality of bulk Si fins and the recessed oxide layer; annealing the stress memorization layer, the plurality of bulk Si fins, and the recessed oxide layer; and removing the stress memorization layer.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: August 16, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Abner Bello, Xiuyu Cai, Hugh Porter, Daniel Pham
  • Patent number: 9281249
    Abstract: Measurement of thickness of layers of a circuit structure is obtained, where the thickness of the layers is measured using an optical critical dimension (OCD) measurement technique, and the layers includes a high-k layer and an interfacial layer. Measurement of thickness of the high-k layer is separately obtained, where the thickness of the high-k layer is measured using a separate measurement technique from the OCD measurement technique. The separate measurement technique provides greater decoupling, as compared to the OCD measurement technique, of a signal for thickness of the high-k layer from a signal for thickness of the interfacial layer of the layers. Characteristics of the circuit structure, such as a thickness of the interfacial layer, are ascertained using, in part, the separately obtained thickness measurement of the high-k layer.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: March 8, 2016
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Alok Vaid, Abner Bello, Sipeng Gu, Lokesh Subramany, Xiang Hu, Akshey Sehgal
  • Publication number: 20150371912
    Abstract: Methods, non-transitory computer readable media, and systems are provided for detecting an endpoint of a chemical mechanical planarization (CMP) process on a semiconductor substrate. The method comprises generating a reference signal, generating a first signal with which to control a CMP system, generating a second signal using a combination of the first signal and the reference signal, commanding the CMP system with the second signal, generating a response signal that indicates an operational characteristic of the CMP system that is responsive to the second signal and a friction property of the semiconductor substrate, and filtering the response signal using the reference signal to determine the endpoint of the CMP process.
    Type: Application
    Filed: June 23, 2014
    Publication date: December 24, 2015
    Inventors: Abner Bello, Michael Wedlake
  • Patent number: 9117930
    Abstract: One method disclosed herein includes forming a first stressed conductive layer within the trenches of a FinFET device and above the upper surface of a fin, forming a second stressed conductive layer above the first stressed conductive layer, removing a portion of the second stressed conductive layer and a portion of the first stressed conductive layer that is positioned above the fin while leaving portions of the first stressed conductive layer positioned within the trenches, and forming a conductive layer above the second stressed conductive layer, the upper surface of the fin and the portions of the first stressed conductive layer positioned within the trenches.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: August 25, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vimal K. Kamineni, Derya Deniz, Abner Bello, Abhijeet Paul, Robert J. Miller, William J. Taylor, Jr.
  • Publication number: 20150198435
    Abstract: Measurement of thickness of layers of a circuit structure is obtained, where the thickness of the layers is measured using an optical critical dimension (OCD) measurement technique, and the layers includes a high-k layer and an interfacial layer. Measurement of thickness of the high-k layer is separately obtained, where the thickness of the high-k layer is measured using a separate measurement technique from the OCD measurement technique. The separate measurement technique provides greater decoupling, as compared to the OCD measurement technique, of a signal for thickness of the high-k layer from a signal for thickness of the interfacial layer of the layers. Characteristics of the circuit structure, such as a thickness of the interfacial layer, are ascertained using, in part, the separately obtained thickness measurement of the high-k layer.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 16, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Alok VAID, Abner BELLO, Sipeng GU, Lokesh SUBRAMANY, Xiang HU, Akshey SEHGAL
  • Patent number: 8975142
    Abstract: Performance of a FinFET is enhanced through a structure that exerts physical stress on the channel. The stress is achieved by a combination of tungsten contacts for the source and drain, epitaxially grown raised source and raised drain, and manipulation of aspects of the tungsten contact deposition resulting in enhancement of the inherent stress of tungsten. The stress can further be enhanced by epitaxially re-growing the portion of the raised source and drain removed by etching trenches for the contacts and/or etching deeper trenches (and corresponding longer contacts) below a surface of the fin.
    Type: Grant
    Filed: April 25, 2013
    Date of Patent: March 10, 2015
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Abhijeet Paul, Abner Bello, Vimal K. Kamineni, Derya Deniz
  • Publication number: 20150041906
    Abstract: One method disclosed herein includes forming a first stressed conductive layer within the trenches of a FinFET device and above the upper surface of a fin, forming a second stressed conductive layer above the first stressed conductive layer, removing a portion of the second stressed conductive layer and a portion of the first stressed conductive layer that is positioned above the fin while leaving portions of the first stressed conductive layer positioned within the trenches, and forming a conductive layer above the second stressed conductive layer, the upper surface of the fin and the portions of the first stressed conductive layer positioned within the trenches.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 12, 2015
    Applicant: GLOBALFOUNDRIES Inc.
    Inventors: Vimal K. Kamineni, Derya Deniz, Abner Bello, Abhijeet Paul, Robert J. Miller, William J. Taylor, JR.
  • Patent number: 8889500
    Abstract: One illustrative method disclosed herein includes, among other things, forming a plurality of fin-formation trenches that define a fin, forming a first stressed layer within the trenches and above the fin and performing at least one etching process on the first stressed layer so as to define spaced-apart portions of the first stressed layer positioned at least partially within the trenches on opposite sides of the fin. The method also includes forming spaced-apart portions of a second stressed layer above the spaced-apart portions of the first layer, forming a third stressed layer above the fin between the spaced-apart portions of the second layer and, after forming the third layer, forming a conductive layer above the second and third layers.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: November 18, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Vimal K. Kamineni, Derya Deniz, Abner Bello, Abhijeet Paul, Robert J. Miller, William J. Taylor, Jr.
  • Publication number: 20140319614
    Abstract: Performance of a FinFET is enhanced through a structure that exerts physical stress on the channel. The stress is achieved by a combination of tungsten contacts for the source and drain, epitaxially grown raised source and raised drain, and manipulation of aspects of the tungsten contact deposition resulting in enhancement of the inherent stress of tungsten. The stress can further be enhanced by epitaxially re-growing the portion of the raised source and drain removed by etching trenches for the contacts and/or etching deeper trenches (and corresponding longer contacts) below a surface of the fin.
    Type: Application
    Filed: April 25, 2013
    Publication date: October 30, 2014
    Applicant: GLOBALFOUNDRIES, Inc.
    Inventors: Abhijeet PAUL, Abner BELLO, Vimal K. KAMINENI, Derya DENIZ
  • Publication number: 20140017903
    Abstract: Methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate having a first surface. In the method, a stress is applied to the semiconductor substrate to change inter-atomic spacing at the first surface of the semiconductor substrate to a stressed inter-atomic spacing. Then, the semiconductor substrate is processed. Thereafter, the stress is released and the first surface of the processed semiconductor substrate retains the stressed inter-atomic spacing.
    Type: Application
    Filed: July 10, 2012
    Publication date: January 16, 2014
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Abner Bello, Abhijeet Paul