Patents by Inventor Abraham Clearfield

Abraham Clearfield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9968898
    Abstract: In some embodiments, the present invention provides amphiphilic nanosheets that comprise lamellar crystals with at least two regions: a first hydrophilic region and a second hydrophobic region. In some embodiments, the amphiphilic nanosheets of the present invention also comprise a plurality of functional groups that are appended to the lamellar crystals. In some embodiments the functional groups are hydrophobic functional groups that are appended to the second region of the lamellar crystals. In some embodiments, the lamellar crystals comprise ?-zirconium phosphates. Additional embodiments of the present invention pertain to methods of making the aforementioned amphiphilic nanosheets. Such methods generally comprise appending one or more functional groups to a stack of lamellar crystals; and exfoliating the stack of lamellar crystals for form the amphiphilic nanosheets.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: May 15, 2018
    Assignee: The Texas A&M University System
    Inventors: Zhengdong Cheng, Andres F. Mejia, Agustin Diaz, Abraham Clearfield, Mahboobul S. Mannan, Ya-Wen Chang
  • Publication number: 20170173546
    Abstract: In some embodiments, the present invention provides amphiphilic nanosheets that comprise lamellar crystals with at least two regions: a first hydrophilic region and a second hydrophobic region. In some embodiments, the amphiphilic nanosheets of the present invention also comprise a plurality of functional groups that are appended to the lamellar crystals. In some embodiments the functional groups are hydrophobic functional groups that are appended to the second region of the lamellar crystals. In some embodiments, the lamellar crystals comprise ?-zirconium phosphates. Additional embodiments of the present invention pertain to methods of making the aforementioned amphiphilic nanosheets. Such methods generally comprise appending one or more functional groups to a stack of lamellar crystals; and exfoliating the stack of lamellar crystals for form the amphiphilic nanosheets.
    Type: Application
    Filed: March 6, 2017
    Publication date: June 22, 2017
    Inventors: Zhengdong Cheng, Andres F. Mejia, Agustin Diaz, Abraham Clearfield, Mahboobul S. Mannan, Ya-Wen Chang
  • Patent number: 9586983
    Abstract: In some embodiments, the present invention provides amphiphilic nanosheets that comprise lamellar crystals with at least two regions: a first hydrophilic region, and a second hydrophobic region. In some embodiments, the amphiphilic nanosheets of the present invention also comprise a plurality of functional groups that are appended to the lamellar crystals. In some embodiments, the functional groups are hydrophobic functional groups that are appended to the second region of the lamellar crystals. In some embodiments, the lamellar crystals comprise ?-zirconium phosphates. Additional embodiments of the present invention pertain to methods of making the aforementioned amphiphilic nanosheets. Such methods generally comprise appending one or more functional groups to a stack of lamellar crystals; and exfoliating the stack of lamellar crystals for form the amphiphilic nanosheets.
    Type: Grant
    Filed: February 18, 2015
    Date of Patent: March 7, 2017
    Assignee: The Texas A&M University System
    Inventors: Zhengdong Cheng, Andres F. Mejia, Agustin Diaz, Abraham Clearfield, Mahboobul S Mannan, Ya-Wen Chang
  • Publication number: 20150299240
    Abstract: In some embodiments, the present invention provides amphiphilic nanosheets that comprise lamellar crystals with at least two regions: a first hydrophilic region, and a second hydrophobic region. In some embodiments, the amphiphilic nanosheets of the present invention also comprise a plurality of functional groups that are appended to the lamellar crystals. In some embodiments, the functional groups are hydrophobic functional groups that are appended to the second region of the lamellar crystals. In some embodiments, the lamellar crystals comprise ?-zirconium phosphates. Additional embodiments of the present invention pertain to methods of making the aforementioned amphiphilic nanosheets. Such methods generally comprise appending one or more functional groups to a stack of lamellar crystals; and exfoliating the stack of lamellar crystals for form the amphiphilic nanosheets.
    Type: Application
    Filed: February 18, 2015
    Publication date: October 22, 2015
    Applicant: The Texas A&M University System
    Inventors: Zhengdong Cheng, Andres F. MEJIA, Agustin DIAZ, Abraham CLEARFIELD, Mahboobul S. MANNAN, Ya-Wen CHANG
  • Patent number: 8986641
    Abstract: In some embodiments, the present invention provides amphiphilic nanosheets that comprise lamellar crystals with at least two regions: a first hydrophilic region, and a second hydrophobic region. In some embodiments, the amphiphilic nanosheets of the present invention also comprise a plurality of functional groups that are appended to the lamellar crystals. In some embodiments, the functional groups are hydrophobic functional groups that are appended to the second region of the lamellar crystals. In some embodiments, the lamellar crystals comprise ?-zirconium phosphates. Additional embodiments of the present invention pertain to methods of making the aforementioned amphiphilic nanosheets. Such methods generally comprise appending one or more functional groups to a stack of lamellar crystals; and exfoliating the stack of lamellar crystals for form the amphiphilic nanosheets.
    Type: Grant
    Filed: March 21, 2013
    Date of Patent: March 24, 2015
    Assignee: The Texas A&M University System
    Inventors: Zhengdong Cheng, Andres F. Mejia, Agustin Diaz, Abraham Clearfield, Mahboobul S Mannan, Ya-Wen Chang
  • Patent number: 7297321
    Abstract: A new class of supermicroporous mixed oxides, with pore sizes in the 10-20 ? range has been prepared utilizing basic metal acetates. The reactions are carried out in non-aqueous solvent media to which an excess of amine is added. Hydrolysis of the reagents is effected by addition of a water-propanol mixture and refluxing. The amine and solvent are removed by thorough washing and/or calcining at temperatures as low as 200° C. Mixtures of transition metal oxides with either ZrO2, TiO2, La2O3, SiO2, Al2O3 or mixtures thereof were prepared. The surface area curves of the pure oxides are Type I with surface areas of 400-600 m2/g and up to 1100 m2/g for the mixed oxides.
    Type: Grant
    Filed: January 11, 2005
    Date of Patent: November 20, 2007
    Assignee: The Texas A&M University System
    Inventors: Boris G. Shpeizer, Abraham Clearfield
  • Patent number: 7211231
    Abstract: A bismuth-213 generator comprising an insoluble composition having the general formula Zr(Phosponate)x(HPO4)2?x.nH2O, wherein x is between 0 and 2; and n is the number of waters of hydration; and wherein cations of radioactive isotopes selected from radium, actinium and combinations thereof are immobilized on the composition. The value of x may be between about 0.2 and about 1. The phosphonate may be n-phosphonomethyl-miniodiacetic acid (PMIDA), wherein x may be between about 0.1 and about 1.9. The phosphonate may be one or more phosphonate having the formula: H2O3P—(CH2)a—N—((CH2)bCO2H)—((CH2)cCO2H), wherein a, b, and c are numbers from 1 to 3 that may or may not be equal. The value of x may also be between about 0.1 and 1.9.
    Type: Grant
    Filed: January 30, 2003
    Date of Patent: May 1, 2007
    Assignees: Lynntech, Inc., U Chicago Argonne LLC, The Texas A&M University System
    Inventors: Paul Sylvester, Abraham Clearfield, Mark L. Dietz
  • Publication number: 20050152829
    Abstract: A new class of supermicroporous mixed oxides, with pore sizes in the 10-20 ? range has been prepared utilizing basic metal acetates. The reactions are carried out in non-aqueous solvent media to which an excess of amine is added. Hydrolysis of the reagents is effected by addition of a water-propanol mixture and refluxing. The amine and solvent are removed by thorough washing and/or calcining at temperatures as low as 200° C. Mixtures of transition metal oxides with either ZrO2, TiO2, La2O3, SiO2, Al2O3 or mixtures thereof were prepared. The surface area curves of the pure oxides are Type I with surface areas of 400-600 m2/g and up to 1100 m2/g for the mixed oxides.
    Type: Application
    Filed: January 11, 2005
    Publication date: July 14, 2005
    Inventors: Boris Shpeizer, Abraham Clearfield
  • Patent number: 6114269
    Abstract: A chemically modified mica composite formed by heating a trioctahedral mica in an aqueous solution of sodium chloride having a concentration of at least 1 mole/liter at a temperature greater than 180 degrees Centigrade for at least 20 hours, thereby replacing exchangeable ions in the mica with sodium. Formation is accomplished at temperatures and pressures which are easily accessed by industrial equipment. The reagent employed is inexpensive and non-hazardous, and generates a precipitate which is readily separated from the modified mica.
    Type: Grant
    Filed: January 7, 2000
    Date of Patent: September 5, 2000
    Inventors: Stephen Frederic Yates, Irene DeFilippi, Romulus Gaita, Abraham Clearfield, Lyudmila Bortun, Anatoly Bortun
  • Patent number: 5200378
    Abstract: A process is disclosed for pillaring layered materials which do not swell appreciably in water. The process comprises first intercalating an amine or other neutral molecule such as an amide or dimethyl sulfoxide between the layers of the material to be pillared. This allows the subsequent incorporation of inorganic pillars which are more temperature stable than the intercalated amine. Also, disclosed are different pillared products produced by the process. The starting materials do not appreciably swell in water and the pillared composition final product is produced by swelling with an inorganic intercalate and then displacing the inorganic intercalate with an inorganic pillaring substance.
    Type: Grant
    Filed: May 20, 1991
    Date of Patent: April 6, 1993
    Assignee: The Texas A&M University System
    Inventor: Abraham Clearfield
  • Patent number: 5017537
    Abstract: A process is disclosed for pillaring layered materials which do not swell appreciably in water. The process comprises first intercalating an amine or other neutral molecule such as an amide or dimethyl sulfoxide between the layers of the material to be pillared. This allows the subsequent incorporation of inorganic pillars which are more temperature stable than the intercalated amine.
    Type: Grant
    Filed: July 14, 1989
    Date of Patent: May 21, 1991
    Assignee: The Texas A&M University System
    Inventor: Abraham Clearfield
  • Patent number: 4512905
    Abstract: Homogeneous sodium zirconium silico-phosphates having the formulaNa.sub.1+x+4y Zr.sub.2-y (SiO.sub.4).sub.x (PO.sub.4).sub.3-xwhere x is from 1 to 2.8 and y is between 0 and about 0.5, are prepared by heating a zirconium phosphate with an aqueous, alkaline sodium silicate solution and calcining the resulting solid orthorhombic crystalline product. The calcined product is useful as a solid electrolyte for transporting sodium ions in a sodium-sulfur storage battery.
    Type: Grant
    Filed: December 23, 1982
    Date of Patent: April 23, 1985
    Assignee: The Texas A&M University System
    Inventors: Abraham Clearfield, Paul Jerus
  • Patent number: 4180551
    Abstract: A process for modifying various inorganic compounds defined by the formula:M(OH).sub.z (HQO.sub.4).sub.2 -z/2.xH.sub.2 Owherein M is a metal ion selected from Groups IVA and IVB of the Periodic Table of Elements, Q is an anion selected from Groups VA and VIB of the Periodic Table of Elements, z is any value from 0 to 2 and x is a number of from 0 to 8, by replacing a hydrogen in the inorganic compound with a metal cation. Suitable cations include those elements selected from Groups IA, IIA, IIIA, IVA, IB, IIB, IIIB including the lanthanide and activide series, IVB, VB, VIB, VIIB and VIII of the Periodic Table of Elements and ammonium. Thereafter, elevation of the temperature causes modification of the crystalline structure of the exchanged compound and provides various novel crystalline phases.
    Type: Grant
    Filed: September 6, 1977
    Date of Patent: December 25, 1979
    Assignee: Texas A&M University System
    Inventor: Abraham Clearfield
  • Patent number: 4059679
    Abstract: A process for modifying various inorganic compounds defined by the formula:M(OH).sub.z (HQO.sub.4).sub.2 -z/2 . xH.sub.2 Owherein M is a metal ion selected from Groups IVA and IVB of the Periodic Table of Elements, Q is an anion selected from Groups VA and VIB of the Periodic Table of Elements, z is any value from 0 to 2 and x is a number of from 0 to 8, by replacing a hydrogen in the inorganic compound with a metal cation. Suitable cations include those elements selected from Groups IA, IIA, IIIA, IVA, IB, IIB, IIIB including the lanthanide and activide series, IVB, VB, VIB, VIIB and VIII of the Periodic Table of Elements and ammonium. Thereafter, elevation of the temperature causes modification of the crystalline structure of the exchanged compound and provides various novel crystalline phases.
    Type: Grant
    Filed: August 5, 1974
    Date of Patent: November 22, 1977
    Assignee: Ohio University
    Inventor: Abraham Clearfield