Patents by Inventor Abraham Galton Bachrach

Abraham Galton Bachrach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11818463
    Abstract: Embodiments are described for a stabilization system configured, in some embodiments, for stabilizing image capture from an aerial vehicle (e.g., a UAV). According to some embodiments, the stabilization systems employs both active and passive stabilization means. A passive stabilization assembly includes a counter-balanced suspension system that includes an elongated arm that extends into and is coupled to the body of a vehicle. The counter-balanced suspension system passively stabilizes a mounted device such as an image capture device to counter motion of the UAV while in use. In some embodiment the counter-balanced suspension system passively stabilizes a mounted image capture assembly that includes active stabilization means (e.g., a motorized gimbal and/or electronic image stabilization). In some embodiments, the active and passive stabilization means operate together to effectively stabilize a mounted image capture device to counter a wide range of motion characteristics.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: November 14, 2023
    Assignee: Skydio, Inc.
    Inventors: David Kalinowski, Stephen R. McClure, Patrick Allen Lowe, Daniel Thomas Adams, Benjamin Scott Thompson, Adam Parker Bry, Abraham Galton Bachrach
  • Patent number: 11787543
    Abstract: An autonomous vehicle that is equipped with image capture devices can use information gathered from the image capture devices to plan a future three-dimensional (3D) trajectory through a physical environment. To this end, a technique is described for image-space based motion planning. In an embodiment, a planned 3D trajectory is projected into an image-space of an image captured by the autonomous vehicle. The planned 3D trajectory is then optimized according to a cost function derived from information (e.g., depth estimates) in the captured image. The cost function associates higher cost values with identified regions of the captured image that are associated with areas of the physical environment into which travel is risky or otherwise undesirable. The autonomous vehicle is thereby encouraged to avoid these areas while satisfying other motion planning objectives.
    Type: Grant
    Filed: January 31, 2023
    Date of Patent: October 17, 2023
    Assignee: Skydio, Inc.
    Inventors: Ryan David Kennedy, Peter Benjamin Henry, Hayk Martirosyan, Jack Louis Zhu, Abraham Galton Bachrach, Adam Parker Bry
  • Publication number: 20230280746
    Abstract: Methods and systems are described for new paradigms for user interaction with an unmanned aerial vehicle (referred to as a flying digital assistant or FDA) using a portable multifunction device (PMD) such as smart phone. In some embodiments, a user may control image capture from an FDA by adjusting the position and orientation of a PMD. In other embodiments, a user may input a touch gesture via a touch display of a PMD that corresponds with a flight path to be autonomously flown by the FDA.
    Type: Application
    Filed: January 31, 2023
    Publication date: September 7, 2023
    Applicant: Skydio, Inc.
    Inventors: Abraham Galton Bachrach, Adam Parker Bry, Matthew Joseph Donahoe
  • Patent number: 11749124
    Abstract: A technique for user interaction with an autonomous unmanned aerial vehicle (UAV) is described. In an example embodiment, perception inputs from one or more sensor devices are processed to build a shared virtual environment that is representative of a physical environment. The sensor devices used to generate perception inputs can include image capture devices onboard an autonomous aerial vehicle that is in flight through the physical environment. The shared virtual environment can provide a continually updated representation of the physical environment which is accessible to multiple network-connected devices, including multiple UAVs and multiple mobile computing devices. The shared virtual environment can be used, for example, to display visual augmentations at network-connected user devices and guide autonomous navigation by the UAV.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: September 5, 2023
    Assignee: Skydio, Inc.
    Inventors: Abraham Galton Bachrach, Adam Parker Bry, Matthew Joseph Donahoe, Hayk Martirosyan
  • Patent number: 11740630
    Abstract: Sports and fitness applications for an autonomous unmanned aerial vehicle (UAV) are described. In an example embodiment, a UAV can be configured to track a human subject using perception inputs from one or more onboard sensors. The perception inputs can be utilized to generate values for various performance metrics associated with the activity of the human subject. In some embodiments, the perception inputs can be utilized to autonomously maneuver the UAV to lead the human subject to satisfy a performance goal. The UAV can also be configured to autonomously capture images of a sporting event and/or make rule determinations while officiating a sporting event.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: August 29, 2023
    Assignee: Skydio, Inc.
    Inventors: Abraham Galton Bachrach, Adam Parker Bry, Matthew Joseph Donahoe, Hayk Martirosyan, Tom Moss
  • Publication number: 20230257115
    Abstract: An autonomous vehicle that is equipped with image capture devices can use information gathered from the image capture devices to plan a future three-dimensional (3D) trajectory through a physical environment. To this end, a technique is described for image-space based motion planning. In an embodiment, a planned 3D trajectory is projected into an image-space of an image captured by the autonomous vehicle. The planned 3D trajectory is then optimized according to a cost function derived from information (e.g., depth estimates) in the captured image. The cost function associates higher cost values with identified regions of the captured image that are associated with areas of the physical environment into which travel is risky or otherwise undesirable. The autonomous vehicle is thereby encouraged to avoid these areas while satisfying other motion planning objectives.
    Type: Application
    Filed: January 31, 2023
    Publication date: August 17, 2023
    Applicant: Skydio, Inc.
    Inventors: Ryan David Kennedy, Peter Benjamin Henry, Hayk Martirosyan, Jack Louis Zhu, Abraham Galton Bachrach, Adam Parker Bry
  • Publication number: 20230257116
    Abstract: An autonomous vehicle that is equipped with image capture devices can use information gathered from the image capture devices to plan a future three-dimensional (3D) trajectory through a physical environment. To this end, a technique is described for image-space based motion planning. In an embodiment, a planned 3D trajectory is projected into an image-space of an image captured by the autonomous vehicle. The planned 3D trajectory is then optimized according to a cost function derived from information (e.g., depth estimates) in the captured image. The cost function associates higher cost values with identified regions of the captured image that are associated with areas of the physical environment into which travel is risky or otherwise undesirable. The autonomous vehicle is thereby encouraged to avoid these areas while satisfying other motion planning objectives.
    Type: Application
    Filed: January 31, 2023
    Publication date: August 17, 2023
    Applicant: Skydio, Inc.
    Inventors: Ryan David Kennedy, Peter Benjamin Henry, Hayk Martirosyan, Jack Louis Zhu, Abraham Galton Bachrach, Adam Parker Bry
  • Patent number: 11726498
    Abstract: A technique is introduced for touchdown detection during autonomous landing by an aerial vehicle. In some embodiments, the introduced technique includes processing perception inputs with a dynamics model of the aerial vehicle to estimate the external forces and/or torques acting on the aerial vehicle. The estimated external forces and/or torques are continually monitored while the aerial vehicle is landing to determine when the aerial vehicle is sufficiently supported by a landing surface. In some embodiments, semantic information associated with objects in the environment is utilized to configure parameters associated with the touchdown detection process.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: August 15, 2023
    Assignee: Skydio, Inc.
    Inventors: Rowland Wilde O'Flaherty, Teodor Tomic, Hayk Martirosyan, Abraham Galton Bachrach, Kristen Marie Holtz, Jack Louis Zhu
  • Publication number: 20230239575
    Abstract: In some examples, a computing device receives, from an unmanned aerial vehicle (UAV), a first image from a first camera on the UAV and a plurality of second images from a plurality of second cameras on the UAV. The plurality of second cameras may be positioned on the UAV for providing a plurality of different fields of view in a plurality of different directions around the UAV. Further, the first camera has a longer focal length than the second cameras. The computing device presents, on a display, a composite image including at least a portion of the first image within a merged image generated from the plurality of second images. The presented composite image enables a user to at least one of: zoom out from the at least one first image to the merged image, or zoom in from the merged image to the at least one first image.
    Type: Application
    Filed: March 17, 2023
    Publication date: July 27, 2023
    Inventors: Peter Benjamin HENRY, Hayk MARTIROSYAN, Abraham Galton BACHRACH, Clement GODARD, Adam Parker BRY, Ryan David KENNEDY
  • Publication number: 20230166862
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: August 30, 2022
    Publication date: June 1, 2023
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20230142394
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may determine a plurality of contour paths spaced apart from each other along at least one axis associated with a scan target. For instance, each contour path may be spaced away from a surface of the scan target based on a selected distance. The UAV may determine a plurality of image capture locations for each contour path. The image capture locations may indicate locations at which an image of a surface of the scan target is to be captured. The UAV may navigate along the plurality of contour paths based on a determined speed while capturing images of the surface of the scan target based on the image capture locations.
    Type: Application
    Filed: November 10, 2021
    Publication date: May 11, 2023
    Inventors: Peter Benjamin HENRY, Hayk MARTIROSYAN, Quentin Allen Wah Yen DELEPINE, Himel MONDAL, Abraham Galton BACHRACH
  • Publication number: 20230144408
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: July 26, 2022
    Publication date: May 11, 2023
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Patent number: 11644832
    Abstract: Methods and systems are described for new paradigms for user interaction with an unmanned aerial vehicle (referred to as a flying digital assistant or FDA) using a portable multifunction device (PMD) such as smart phone. In some embodiments, a user may control image capture from an FDA by adjusting the position and orientation of a PMD. In other embodiments, a user may input a touch gesture via a touch display of a PMD that corresponds with a flight path to be autonomously flown by the FDA.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: May 9, 2023
    Assignee: Skydio, Inc.
    Inventors: Abraham Galton Bachrach, Adam Parker Bry, Matthew Joseph Donahoe
  • Patent number: 11611700
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may control a position of a first camera to cause the first camera to capture a first image of a target. The UAV may receive a plurality of second images from a plurality of second cameras, the plurality of second cameras positioned on the UAV for providing a plurality of different fields of view in a plurality of different directions around the UAV, the first camera having a longer focal length than the second cameras. The UAV may combine at least some of the plurality of second images to generate a composite image corresponding to the first image and having a wider-angle field of view than the first image. The UAV may send the first image and the composite image to a computing device.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: March 21, 2023
    Assignee: SKYDIO, INC.
    Inventors: Peter Benjamin Henry, Hayk Martirosyan, Abraham Galton Bachrach, Clement Godard, Adam Parker Bry, Ryan David Kennedy
  • Patent number: 11592845
    Abstract: An autonomous vehicle that is equipped with image capture devices can use information gathered from the image capture devices to plan a future three-dimensional (3D) trajectory through a physical environment. To this end, a technique is described for image-space based motion planning. In an embodiment, a planned 3D trajectory is projected into an image-space of an image captured by the autonomous vehicle. The planned 3D trajectory is then optimized according to a cost function derived from information (e.g., depth estimates) in the captured image. The cost function associates higher cost values with identified regions of the captured image that are associated with areas of the physical environment into which travel is risky or otherwise undesirable. The autonomous vehicle is thereby encouraged to avoid these areas while satisfying other motion planning objectives.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 28, 2023
    Assignee: Skydio, Inc.
    Inventors: Ryan David Kennedy, Peter Benjamin Henry, Hayk Martirosyan, Jack Louis Zhu, Abraham Galton Bachrach, Adam Parker Bry
  • Patent number: 11592844
    Abstract: An autonomous vehicle that is equipped with image capture devices can use information gathered from the image capture devices to plan a future three-dimensional (3D) trajectory through a physical environment. To this end, a technique is described for image-space based motion planning. In an embodiment, a planned 3D trajectory is projected into an image-space of an image captured by the autonomous vehicle. The planned 3D trajectory is then optimized according to a cost function derived from information (e.g., depth estimates) in the captured image. The cost function associates higher cost values with identified regions of the captured image that are associated with areas of the physical environment into which travel is risky or otherwise undesirable. The autonomous vehicle is thereby encouraged to avoid these areas while satisfying other motion planning objectives.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 28, 2023
    Assignee: Skydio, Inc.
    Inventors: Ryan David Kennedy, Peter Benjamin Henry, Hayk Martirosyan, Jack Louis Zhu, Abraham Galton Bachrach, Adam Parker Bry
  • Publication number: 20230021969
    Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.
    Type: Application
    Filed: August 18, 2022
    Publication date: January 26, 2023
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry
  • Publication number: 20230002074
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: August 31, 2022
    Publication date: January 5, 2023
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20220411102
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: August 30, 2022
    Publication date: December 29, 2022
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20220415185
    Abstract: Described herein are systems and methods for structure scan using an unmanned aerial vehicle. For example, some methods include accessing a three-dimensional map of a structure; generating facets based on the three-dimensional map, wherein the facets are respectively a polygon on a plane in three-dimensional space that is fit to a subset of the points in the three-dimensional map; generating a scan plan based on the facets, wherein the scan plan includes a sequence of poses for an unmanned aerial vehicle to assume to enable capture, using image sensors of the unmanned aerial vehicle, of images of the structure; causing the unmanned aerial vehicle to fly to assume a pose corresponding to one of the sequence of poses of the scan plan; and capturing one or more images of the structure from the pose.
    Type: Application
    Filed: August 18, 2022
    Publication date: December 29, 2022
    Inventors: Peter Henry, Jack Zhu, Brian Richman, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Bry