Patents by Inventor Abraham J. Evert

Abraham J. Evert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11847534
    Abstract: A superconducting readout system employing a microwave transmission line, and a microwave superconducting resonator communicatively coupled to the microwave transmission line, and including a superconducting quantum interference device (SQUID), may be advantageously calibrated at least in part by measuring a resonant frequency of the microwave superconducting resonator in response to a flux bias applied to the SQUID, measuring a sensitivity of the resonant frequency in response to the flux bias, and selecting an operating frequency and a sensitivity of the microwave superconducting resonator based at least in part on a variation of the resonant frequency as a function of the flux bias. The flux bias may be applied to the SQUID by an interface inductively coupled to the SQUID. Calibration of the superconducting readout system may also include determining at least one of a propagation delay, a microwave transmission line delay, and a microwave transmission line phase offset.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: December 19, 2023
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Jed D. Whittaker, Loren J. Swenson, Ilya V. Perminov, Abraham J. Evert, Peter D. Spear, Mark H. Volkmann, Catia Baron Aznar, Michael S. Babcock
  • Publication number: 20210350268
    Abstract: A superconducting readout system employing a microwave transmission line, and a microwave superconducting resonator communicatively coupled to the microwave transmission line, and including a superconducting quantum interference device (SQUID), may be advantageously calibrated at least in part by measuring a resonant frequency of the microwave superconducting resonator in response to a flux bias applied to the SQUID, measuring a sensitivity of the resonant frequency in response to the flux bias, and selecting an operating frequency and a sensitivity of the microwave superconducting resonator based at least in part on a variation of the resonant frequency as a function of the flux bias. The flux bias may be applied to the SQUID by an interface inductively coupled to the SQUID. Calibration of the superconducting readout system may also include determining at least one of a propagation delay, a microwave transmission line delay, and a microwave transmission line phase offset.
    Type: Application
    Filed: August 22, 2019
    Publication date: November 11, 2021
    Inventors: Jed D. Whittaker, Loren J. Swenson, Ilya V. Perminov, Abraham J. Evert, Peter D. Spear, Mark H. Volkmann, Catia Baron Aznar, Michael S. Babcock
  • Patent number: 10789540
    Abstract: Generate an automorphism of the problem graph, determine an embedding of the automorphism to the hardware graph and modify the embedding of the problem graph into the hardware graph to correspond to the embedding of the automorphism to the hardware graph. Determine an upper-bound on the required chain strength. Calibrate and record properties of the component of a quantum processor with a digital processor, query the digital processor for a range of properties. Generate a bit mask and change the sign of the bias of individual qubits according to the bit mask before submitting a problem to a quantum processor, apply the same bit mask to the bit result. Generate a second set of parameters of a quantum processor from a first set of parameters via a genetic algorithm.
    Type: Grant
    Filed: April 13, 2017
    Date of Patent: September 29, 2020
    Assignee: D-WAVE SYSTEMS INC.
    Inventors: Andrew D. King, Robert B. Israel, Paul I. Bunyk, Kelly T. R. Boothby, Steven P. Reinhardt, Aidan P. Roy, James A. King, Trevor M. Lanting, Abraham J. Evert
  • Publication number: 20170300817
    Abstract: Generate an automorphism of the problem graph, determine an embedding of the automorphism to the hardware graph and modify the embedding of the problem graph into the hardware graph to correspond to the embedding of the automorphism to the hardware graph. Determine an upper-bound on the required chain strength. Calibrate and record properties of the component of a quantum processor with a digital processor, query the digital processor for a range of properties. Generate a bit mask and change the sign of the bias of individual qubits according to the bit mask before submitting a problem to a quantum processor, apply the same bit mask to the bit result. Generate a second set of parameters of a quantum processor from a first set of parameters via a genetic algorithm.
    Type: Application
    Filed: April 13, 2017
    Publication date: October 19, 2017
    Inventors: Andrew D. King, Robert B. Israel, Paul I. Bunyk, Tomas J. Boothby, Steven P. Reinhardt, Aidan P. Roy, James A. King, Trevor M. Lanting, Abraham J. Evert