Patents by Inventor Abraham K. Feldman

Abraham K. Feldman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11975447
    Abstract: Systems and methods for determining safe and unsafe zones in a workspace—where safe actions are calculated in real time based on all relevant objects (e.g., some observed by sensors and others computationally generated based on analysis of the sensed workspace) and on the current state of the machinery (e.g., a robot) in the workspace—may utilize a variety of workspace-monitoring approaches as well as dynamic modeling of the robot geometry. The future trajectory of the robot(s) and/or the human(s) may be forecast using, e.g., a model of human movement and other forms of control. Modeling and forecasting of the robot may, in some embodiments, make use of data provided by the robot controller that may or may not include safety guarantees.
    Type: Grant
    Filed: February 2, 2023
    Date of Patent: May 7, 2024
    Assignee: Veo Robotics, Inc.
    Inventors: Clara Vu, Scott Denenberg, Abraham K. Feldman
  • Publication number: 20230191635
    Abstract: Systems and methods for determining safe and unsafe zones in a workspace - where safe actions are calculated in real time based on all relevant objects (e.g., some observed by sensors and others computationally generated based on analysis of the sensed workspace) and on the current state of the machinery (e.g., a robot) in the workspace - may utilize a variety of workspace-monitoring approaches as well as dynamic modeling of the robot geometry. The future trajectory of the robot(s) and/or the human(s) may be forecast using, e.g., a model of human movement and other forms of control. Modeling and forecasting of the robot may, in some embodiments, make use of data provided by the robot controller that may or may not include safety guarantees.
    Type: Application
    Filed: February 2, 2023
    Publication date: June 22, 2023
    Inventors: Clara VU, Scott DENENBERG, Abraham K. FELDMAN
  • Patent number: 11623356
    Abstract: Systems and methods for determining safe and unsafe zones in a workspace—where safe actions are calculated in real time based on all relevant objects (e.g., some observed by sensors and others computationally generated based on analysis of the sensed workspace) and on the current state of the machinery (e.g., a robot) in the workspace—may utilize a variety of workspace-monitoring approaches as well as dynamic modeling of the robot geometry. The future trajectory of the robot(s) and/or the human(s) may be forecast using, e.g., a model of human movement and other forms of control. Modeling and forecasting of the robot may, in some embodiments, make use of data provided by the robot controller that may or may not include safety guarantees.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: April 11, 2023
    Assignee: VEO ROBOTICS, INC.
    Inventors: Clara Vu, Scott Denenberg, Abraham K. Feldman
  • Patent number: 11541543
    Abstract: Systems and methods for determining safe and unsafe zones in a workspace—where safe actions are calculated in real time based on all relevant objects (e.g., some observed by sensors and others computationally generated based on analysis of the sensed workspace) and on the current state of the machinery (e.g., a robot) in the workspace—may utilize a variety of workspace-monitoring approaches as well as dynamic modeling of the robot geometry. The future trajectory of the robot(s) and/or the human(s) may be forecast using, e.g., a model of human movement and other forms of control. Modeling and forecasting of the robot may, in some embodiments, make use of data provided by the robot controller that may or may not include safety guarantees.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: January 3, 2023
    Assignee: VEO ROBOTICS, INC.
    Inventors: Clara Vu, Scott Denenberg, Abraham K. Feldman
  • Patent number: 11518051
    Abstract: Systems and methods for determining safe and unsafe zones in a workspace—where safe actions are calculated in real time based on all relevant objects (e.g., some observed by sensors and others computationally generated based on analysis of the sensed workspace) and on the current state of the machinery (e.g., a robot) in the workspace—may utilize a variety of workspace-monitoring approaches as well as dynamic modeling of the robot geometry. The future trajectory of the robot(s) and/or the human(s) may be forecast using, e.g., a model of human movement and other forms of control. Modeling and forecasting of the robot may, in some embodiments, make use of data provided by the robot controller that may or may not include safety guarantees.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: December 6, 2022
    Assignee: VEO ROBOTICS, INC.
    Inventors: Clara Vu, Scott Denenberg, Abraham K. Feldman
  • Publication number: 20220227013
    Abstract: Systems and methods for determining safe and unsafe zones in a workspace—where safe actions are calculated in real time based on all relevant objects (e.g., some observed by sensors and others computationally generated based on analysis of the sensed workspace) and on the current state of the machinery (e.g., a robot) in the workspace—may utilize a variety of workspace-monitoring approaches as well as dynamic modeling of the robot geometry. The future trajectory of the robot(s) and/or the human(s) may be forecast using, e.g., a model of human movement and other forms of control. Modeling and forecasting of the robot may, in some embodiments, make use of data provided by the robot controller that may or may not include safety guarantees.
    Type: Application
    Filed: April 4, 2022
    Publication date: July 21, 2022
    Inventors: Clara VU, Scott DENENBERG, Abraham K. FELDMAN
  • Publication number: 20210053224
    Abstract: Various embodiments for enforcing safe operation of machinery performing an activity in a three-dimensional (3D) workspace includes computationally generating a 3D spatial representation of the workspace; computationally mapping 3D regions of the workspace corresponding to space occupied by the machinery and a human; and based thereon, restricting operation of the machinery in accordance with a safety protocol during physical performance of the activity.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 25, 2021
    Inventors: Paul Jakob SCHROEDER, Ilya A. KRIVESHKO, Marek WARTENBERG, Brad C. MELLO, Clara VU, Scott DENENBERG, Abraham K. FELDMAN
  • Publication number: 20210053225
    Abstract: Various embodiments for enforcing safe operation of machinery performing an activity in a three-dimensional (3D) workspace includes computationally generating a 3D spatial representation of the workspace; computationally mapping 3D regions of the workspace corresponding to space occupied by the machinery and a human; and based thereon, restricting operation of the machinery in accordance with a safety protocol during physical performance of the activity.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 25, 2021
    Inventors: Ilya A. KRIVESHKO, Paul Jakob SCHROEDER, Marek WARTENBERG, Brad C. MELLO, Clara VU, Scott DENENBERG, Abraham K. FELDMAN, Matthew GALLIGAN, Patrick SOBALVARRO
  • Publication number: 20200331155
    Abstract: Systems and methods for determining safe and unsafe zones in a workspace—where safe actions are calculated in real time based on all relevant objects (e.g., some observed by sensors and others computationally generated based on analysis of the sensed workspace) and on the current state of the machinery (e.g., a robot) in the workspace—may utilize a variety of workspace-monitoring approaches as well as dynamic modeling of the robot geometry. The future trajectory of the robot(s) and/or the human(s) may be forecast using, e.g., a model of human movement and other forms of control. Modeling and forecasting of the robot may, in some embodiments, make use of data provided by the robot controller that may or may not include safety guarantees.
    Type: Application
    Filed: July 2, 2020
    Publication date: October 22, 2020
    Inventors: Clara VU, Scott DENENBERG, Abraham K. FELDMAN
  • Publication number: 20200331146
    Abstract: Systems and methods for determining safe and unsafe zones in a workspace—where safe actions are calculated in real time based on all relevant objects (e.g., some observed by sensors and others computationally generated based on analysis of the sensed workspace) and on the current state of the machinery (e.g., a robot) in the workspace—may utilize a variety of workspace-monitoring approaches as well as dynamic modeling of the robot geometry. The future trajectory of the robot(s) and/or the human(s) may be forecast using, e.g., a model of human movement and other forms of control. Modeling and forecasting of the robot may, in some embodiments, make use of data provided by the robot controller that may or may not include safety guarantees.
    Type: Application
    Filed: July 2, 2020
    Publication date: October 22, 2020
    Inventors: Clara VU, Scott DENENBERG, Abraham K. FELDMAN
  • Publication number: 20170169135
    Abstract: A replication method for use within CAD software ignores parametric requirements and instead searches 3D geometry of components mated to a replication candidate directly for geometric elements that are identical to those on which the candidate is constrained. The system counts the number of identical geometric elements to determine the number of candidate instances to replicate, and then constrains one instance to each element with constraints equivalent to the constraints applying to the original candidate.
    Type: Application
    Filed: December 9, 2016
    Publication date: June 15, 2017
    Inventors: Malay Kumar, Abraham K. Feldman