Patents by Inventor Abrahim Hussain

Abrahim Hussain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230416387
    Abstract: This invention relates generally to molecules that specifically engage 41BB, a member of the TNF receptor superfamily (TNFRSF). More specifically, this invention relates to multivalent and multispecific molecules that bind at least 41BB.
    Type: Application
    Filed: December 16, 2022
    Publication date: December 28, 2023
    Applicant: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Macedo, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rascon, Quinn Deveraux
  • Patent number: 11566078
    Abstract: This invention relates generally to molecules that specifically engage 41BB, a member of the TNF receptor superfamily (TNFRSF). More specifically, this invention relates to multivalent and multispecific molecules that bind at least 41BB.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: January 31, 2023
    Assignee: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Macedo, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rascon, Quinn Deveraux
  • Publication number: 20220106397
    Abstract: This invention relates generally to molecules that specifically engage OX40, a member of the TNF receptor superfamily (TNFRSF). More specifically this invention relates to multivalent and multispecific molecules that bind at least OX40.
    Type: Application
    Filed: August 10, 2021
    Publication date: April 7, 2022
    Applicant: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Macedo, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rascon, Quinn Deveraux
  • Publication number: 20220064318
    Abstract: The disclosure relates generally to molecules that specifically engage death receptor 5 (DR5), a member of the TNF receptor superfamily (TNFRSF). More specifically the disclosure relates to multivalent and multispecific molecules that bind at least DR5.
    Type: Application
    Filed: August 5, 2021
    Publication date: March 3, 2022
    Applicant: Inhibrx, Inc.
    Inventors: John C. Timmer, Kyle S. Jones, Amir S. Razai, Abrahim Hussain, Katelyn M. Willis, Quinn Deveraux, Brendan P. Eckelman
  • Patent number: 11117972
    Abstract: This invention relates generally to molecules that specifically engage OX40, a member of the TNF receptor superfamily (TNFRSF). More specifically this invention relates to multivalent and multispecific molecules that bind at least OX40.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: September 14, 2021
    Assignee: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Hata, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rascon, Quinn Deveraux
  • Patent number: 11117973
    Abstract: The disclosure relates generally to molecules that specifically engage death receptor 5 (DR5), a member of the TNF receptor superfamily (TNFRSF) and methods of treatment. More specifically the disclosure relates to multivalent and multispecific molecules that bind at least DR5.
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: September 14, 2021
    Assignee: Inhibrx, Inc.
    Inventors: John C. Timmer, Kyle S. Jones, Amir S. Razai, Abrahim Hussain, Katelyn M. Willis, Quinn Deveraux, Brendan P. Eckelman
  • Patent number: 10844129
    Abstract: This disclosure generally provides molecules that specifically engage glucocorticoid-induced TNFR-related protein (GITR), a member of the TNF receptor superfamily (TNFRSF). More specifically, the disclosure relates to multivalent and/or multispecific molecules that bind at least GITR.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: November 24, 2020
    Assignee: Inhibrx, Inc.
    Inventors: John C. Timmer, Kyle S. Jones, Amir Razai, Abrahim Hussain, Katelyn M. Willis, Quinn Deveraux, Brendan P. Eckelman
  • Publication number: 20200199243
    Abstract: This invention relates generally to molecules that specifically engage 41BB, a member of the TNF receptor superfamily (TNFRSF). More specifically, this invention relates to multivalent and multispecific molecules that bind at least 41BB.
    Type: Application
    Filed: October 15, 2019
    Publication date: June 25, 2020
    Applicant: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Macedo, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rascon, Quinn Deveraux
  • Patent number: 10501551
    Abstract: This invention relates generally to molecules that specifically engage 41BB, a member of the TNF receptor superfamily (TNFRSF). More specifically, this invention relates to multivalent and multispecific molecules that bind at least 41BB.
    Type: Grant
    Filed: January 11, 2017
    Date of Patent: December 10, 2019
    Assignee: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Hata, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rascon, Quinn Deveraux
  • Publication number: 20190309083
    Abstract: The disclosure relates generally to molecules that specifically engage death receptor 5 (DR5), a member of the TNF receptor superfamily (TNFRSF). More specifically the disclosure relates to multivalent and multispecific molecules that bind at least DR5.
    Type: Application
    Filed: April 18, 2019
    Publication date: October 10, 2019
    Applicant: Inhibrx, Inc.
    Inventors: John C. Timmer, Kyle S. Jones, Amir S. Razai, Abrahim Hussain, Katelyn M. Willis, Quinn Deveraux, Brendan P. Eckelman
  • Publication number: 20190263916
    Abstract: This invention relates generally to molecules that specifically engage OX40, a member of the TNF receptor superfamily (TNFRSF). More specifically this invention relates to multivalent and multispecific molecules that bind at least OX40.
    Type: Application
    Filed: March 7, 2019
    Publication date: August 29, 2019
    Applicant: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Hata, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rason, Quinn Deveraux
  • Patent number: 10308720
    Abstract: The disclosure relates generally to molecules that specifically engage death receptor 5 (DR5), a member of the TNF receptor superfamily (TNFRSF). More specifically the disclosure relates to multivalent and multispecific molecules that bind at least DR5.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: June 4, 2019
    Assignee: Inhibrx, Inc.
    Inventors: John C. Timmer, Kyle S. Jones, Amir S. Razai, Abrahim Hussain, Katelyn M. Willis, Quinn Deveraux, Brendan P. Eckelman
  • Publication number: 20190100594
    Abstract: This disclosure generally provides molecules that specifically engage glucocorticoid-induced TNFR-related protein (GITR), a member of the TNF receptor superfamily (TNFRSF). More specifically, the disclosure relates to multivalent and/or multispecific molecules that bind at least GITR.
    Type: Application
    Filed: August 31, 2018
    Publication date: April 4, 2019
    Applicant: Inhibrx, Inc.
    Inventors: John C. TIMMER, Kyle S. JONES, Amir RAZAI, Abrahim HUSSAIN, Katelyn M. WILLIS, Quinn DEVERAUX, Brendan P. ECKELMAN
  • Patent number: 10093742
    Abstract: This disclosure generally provides molecules that specifically engage glucocorticoid-induced TNFR-related protein (GITR), a member of the TNF receptor superfamily (TNFRSF). More specifically, the disclosure relates to multivalent and/or multispecific molecules that bind at least GITR.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: October 9, 2018
    Assignee: Inhibrx, Inc.
    Inventors: John C. Timmer, Kyle S. Jones, Amir S. Razai, Abrahim Hussain, Katelyn M. Willis, Quinn Deveraux, Brendan P. Eckelman
  • Publication number: 20170320958
    Abstract: This disclosure generally provides molecules that specifically engage glucocorticoid-induced TNFR-related protein (GITR), a member of the TNF receptor superfamily (TNFRSF). More specifically, the disclosure relates to multivalent and/or multispecific molecules that bind at least GITR.
    Type: Application
    Filed: June 9, 2017
    Publication date: November 9, 2017
    Inventors: John C. Timmer, Kyle S. Jones, Amir S. Razai, Abrahim Hussain, Katelyn M. Willis, Quinn Deveraux, Brendan P. Eckelman
  • Publication number: 20170198050
    Abstract: This invention relates generally to molecules that specifically engage 41BB, a member of the TNF receptor superfamily (TNFRSF). More specifically, this invention relates to multivalent and multispecific molecules that bind at least 41BB.
    Type: Application
    Filed: January 11, 2017
    Publication date: July 13, 2017
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Hata, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rason, Quinn Deveraux
  • Publication number: 20170198051
    Abstract: This invention relates generally to molecules that specifically engage OX40, a member of the TNF receptor superfamily (TNFRSF). More specifically this invention relates to multivalent and multispecific molecules that bind at least OX40.
    Type: Application
    Filed: January 11, 2017
    Publication date: July 13, 2017
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Hata, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rason, Quinn Deveraux
  • Publication number: 20170022284
    Abstract: This disclosure generally provides molecules that specifically engage glucocorticoid-induced TNFR-related protein (GITR), a member of the TNF receptor superfamily (TNFRSF). More specifically, the disclosure relates to multivalent and/or multispecific molecules that bind at least GITR.
    Type: Application
    Filed: July 22, 2016
    Publication date: January 26, 2017
    Inventors: John C. Timmer, Kyle S. Jones, Amir S. Razai, Abrahim Hussain, Katelyn M. Willis, Quinn Deveraux, Brendan P. Eckelman
  • Publication number: 20170015753
    Abstract: The disclosure relates generally to molecules that specifically engage death receptor 5 (DR5), a member of the TNF receptor superfamily (TNFRSF). More specifically the disclosure relates to multivalent and multispecific molecules that bind at least DR5.
    Type: Application
    Filed: July 18, 2016
    Publication date: January 19, 2017
    Inventors: John C. Timmer, Kyle S. Jones, Amir S. Razai, Abrahim Hussain, Katelyn M. Willis, Quinn Deveraux, Brendan P. Eckelman