Patents by Inventor Achim Stammer

Achim Stammer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7754900
    Abstract: Processes comprising: providing a reactive distillation column having an upper region, a middle region and a lower region; feeding ethylene glycol and an aqueous formaldehyde solution into the reactive distillation column in the middle region of the reactive distillation column; reacting the ethylene glycol and the aqueous formaldehyde solution in the reactive distillation column in the presence of a catalyst to form dioxolane; removing a product stream comprising dioxolane in an amount of at least 75% by weight from the upper region of the reactive distillation column; and removing a bottom stream comprising one or more components having boiling points higher than dioxolane from the lower region of the reactive distillation column.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: July 13, 2010
    Assignee: BASF SE
    Inventors: Markus Siegert, Neven Lang, Eckhard Stroefer, Achim Stammer
  • Publication number: 20100152466
    Abstract: The invention relates to an integrated process for preparing trioxane from formaldehyde in which a stream A1 comprising water and formaldehyde and a recycle stream B2 consisting substantially of water and formaldehyde are fed to a trioxane synthesis reactor in which the formaldehyde is converted to trioxane to obtain a product stream A2 comprising trioxane, water and formaldehyde; stream A2 is fed to a first distillation column and distilled at a pressure in the range from 0.1 to 2.5 bar to obtain a stream B1 enriched in trioxane, and the stream B2 consisting substantially of water and formaldehyde; stream B1 and a recycle stream D1 comprising trioxane, water and formaldehyde are fed to a second distillation column and distilled at a pressure in the range from 0.2 to 17.5 bar to obtain a product stream C2 consisting substantially of trioxane, and a stream C1 comprising trioxane, water and formaldehyde; stream C1 is fed to a third distillation column and distilled at a pressure in the range from 0.1 to 2.
    Type: Application
    Filed: August 4, 2006
    Publication date: June 17, 2010
    Inventors: Neven Lang, Eckhard Stroefer, Achim Stammer, Thorsten Friese, Markus Siegert, Hans Hasse, Thomas Gruetzner, Sergej Blagov
  • Patent number: 7713387
    Abstract: A process for removing trioxane from a use stream I of formaldehyde, trioxane and water, by a) providing a use stream I of formaldehyde as the main component and trioxane and water as the secondary components, b) mixing the use stream I with a recycle stream VII to obtain a feed stream Ia, c) distilling the use stream Ia in a first distillation stage to obtain a stream II of formaldehyde as the main component and water as the secondary component, and a stream III of trioxane as the main component and water and formaldehyde as the secondary components, d) distilling the stream III in a second distillation stage having a pressure higher than in the first distillation stage, to obtain a stream IV of trioxane and a stream V of trioxane as the main component and water and formaldehyde as the secondary components, e) distilling the stream V in a third distillation stage to obtain a stream VI of water and the recycle stream VII of trioxane as the main component and water and formaldehyde as the secondary components
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: May 11, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Markus Siegert, Neven Lang, Eckhard Ströfer, Achim Stammer, Thorsten Friese, Hans Hasse
  • Publication number: 20100010176
    Abstract: A process for preparing water-absorbing polymer beads by polymerizing droplets of a monomer solution in a gas phase surrounding the droplets, the initiator being added to the monomer solution from 0.5 to 60 seconds before the droplets are generated.
    Type: Application
    Filed: October 2, 2007
    Publication date: January 14, 2010
    Applicant: BASF SE
    Inventors: Dennis Lösch, Marco Krüger, Achim Stammer
  • Publication number: 20090275725
    Abstract: The present invention relates to a process for the preparation of polysulfones having a yellowness index according to DIN 6167 of less than 19 and polyether sulfones having a yellowness index according to DIN 6167 of less than 30, wherein the polymerization is carried out in basic, aprotic solvents with the use of a positively conveying stirrer passing close to the wall. The present invention also relates to the polyether sulfones and polysulfones obtainable for the first time by this process and to the use of such polymers for the production of moldings, films, membranes and foams.
    Type: Application
    Filed: June 13, 2007
    Publication date: November 5, 2009
    Applicant: BASF SE
    Inventors: Christian Dienes, Marco Krüger, Stefan Müssig, Jörg Erbes, Achim Stammer, Martin Weber, Karl-Heinz Wassmer, Gerhard Lange
  • Patent number: 7598339
    Abstract: A process for removing residual monomers from polyoxymethylene homo- or copolymers, comprising the following process steps: a) the residual monomers are removed in gaseous form as vapors from the polymer in a devolatilization apparatus, b) the residual monomer vapors are removed through a vapor pipe, c) the residual monomers are condensed from the vapors in a condensation apparatus at from 1.09 to 102.4 bar and from 102 to 230° C., the temperature not falling below 102° C. at any point of the condensation apparatus, and those surfaces of the condensation apparatus which come into contact with the vapors being coated with a liquid film of condensed residual monomers.
    Type: Grant
    Filed: May 17, 2005
    Date of Patent: October 6, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Claudius Schwittay, Elmar Stockelmann, Johannes Heinemann, Knut Zollner, Achim Stammer
  • Publication number: 20080283384
    Abstract: The invention relates to a process for preparing trioxane and at least one comonomer for preparing (co)polymers based on trioxane, in which, in a first step, formaldehyde the at least one comonomer reactant are reacted in aqueous solution to give trioxane and comonomer, to obtain a reaction mixture A1 comprising trioxane, comonomer, formaldehyde and water, with or without comonomer reactant. In a second step, the reaction mixture A1 is distilled in a first distillation stage at a first pressure to obtain a stream B1 enriched in trioxane and comonomer and a stream B2 comprising essentially water and formaldehyde, with or without comonomer reactant. In a third step, stream B1 is distilled in a second distillation stage at a pressure which is above the pressure of the first distillation stage to obtain a stream C1 comprising trioxane, comonomer and water and a product stream C2 consisting essentially of comonomer and trioxane.
    Type: Application
    Filed: October 27, 2006
    Publication date: November 20, 2008
    Applicant: BASF SE
    Inventors: Neven Lang, Ralf Boehling, Achim Stammer, Jan Oldenburg, Markus Siegert, Eckhard Stroefer
  • Publication number: 20080281109
    Abstract: The invention relates to an integrated process for preparing trioxane from formaldehyde in which, in a first step, a stream A1 comprising water and formaldehyde and a recycle stream B2 consisting substantially of water and formaldehyde are fed to a trioxane synthesis reactor in which the formaldehyde is converted to trioxane to obtain a product stream A2 comprising trioxane, water and formaldehyde. Stream A2 and a recycle stream D1 comprising trioxane, water and formaldehyde are fed to a first distillation column and distilled at a pressure in the range from 0.1 to 2.5 bar to obtain a stream B1 enriched in trioxane, and the stream B2 consisting substantially of water and formaldehyde. Stream B1 is fed to a second distillation column and distilled at a pressure in the range from 0.2 to 17.5 bar to obtain a product stream C2 consisting substantially of trioxane, and a stream C1 comprising trioxane, water and formaldehyde.
    Type: Application
    Filed: August 1, 2006
    Publication date: November 13, 2008
    Applicant: BASF SE
    Inventors: Neven Lang, Eckhard Stroefer, Achim Stammer, Thorsten Friese, Markus Siegert, Hans Hasse, Thomas Grutzner, Sergej Blagov
  • Publication number: 20080255376
    Abstract: Processes comprising: providing a reactive distillation column having an upper region, a middle region and a lower region; feeding ethylene glycol and an aqueous formaldehyde solution into the reactive distillation column in the middle region of the reactive distillation column; reacting the ethylene glycol and the aqueous formaldehyde solution in the reactive distillation column in the presence of a catalyst to form dioxolane; removing a product stream comprising dioxolane in an amount of at least 75% by weight from the upper region of the reactive distillation column; and removing a bottom stream comprising one or more components having boiling points higher than dioxolane from the lower region of the reactive distillation column.
    Type: Application
    Filed: September 6, 2006
    Publication date: October 16, 2008
    Inventors: Markus Siegert, Neven Lang, Eckhard Stroefer, Achim Stammer
  • Patent number: 7431804
    Abstract: A process is proposed for the distillation or reactive distillation of a mixture that includes at least one toxic component, the process being carried out in a column containing a structured packing, having at least one packing layer (1) having a lower end (2) and an upper end (3), the packing layer having an internal geometry varying over its height, in such a manner that in the distillation or reactive distillation, in a first, lower region (6) of the packing layer (1) a bubbling layer having a predominantly disperse gas phase can be established and simultaneously in a second, upper region (7) of the packing layer (1) a film flow having a predominantly continuous gas phase can be established.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: October 7, 2008
    Assignee: BASF Aktiengesellschaft
    Inventors: Eckhard Ströfer, Gerd Kaibel, Achim Stammer, Carsten Oost, Martin Sohn, Manfred Stroezel, Walter Dobler
  • Publication number: 20080234459
    Abstract: A process for preparing polyoxymethylene homopolymers or copolymers by homopolymerization or copolymerization of trioxane or additionally of suitable comonomers, in which trioxane which still comprises residual monomers is firstly prepared in a monomer plant and is degassed in one or more stages to give one or more vapor streams (13, 14) which are, if appropriate, fed to a condenser (K) in which the condensable fractions of these vapor streams are condensed to give a condensate (15) which is recycled to the polymerization reactor (P) and one or more gaseous, formaldehyde-comprising streams (16) and also a partially degassed polyoxymethylene homopolymer or copolymer (17) which is fed to an extruder (E) or kneader and is mixed with customary additives and processing aids in this to give a polymer melt (19) and extraction of a formaldehyde-comprising extruder or kneader offgas (18) from the extruder (E) or kneader, wherein the formaldehyde-comprising secondary streams (14, 16, 18) from the polymer plant are r
    Type: Application
    Filed: August 25, 2006
    Publication date: September 25, 2008
    Applicant: BASF SE
    Inventors: Neven Lang, Knut Zollner, Achim Stammer, Elmar Stockelmann
  • Publication number: 20080194845
    Abstract: The invention relates to an integrated process for preparing trioxane from formaldehyde, comprising the steps of: a) a stream A1 comprising water and formaldehyde and a recycle stream B2 consisting substantially of water and formaldehyde are fed to a trioxane synthesis reactor and allowed to react to obtain a product stream A2 comprising trioxane, water and formaldehyde; b) stream A2 is fed to a first low-pressure distillation column and distilled at a pressure of from 0.1 to 2.5 bar to obtain a stream B1 enriched in trioxane and additionally comprising water and formaldehyde, and the recycle stream B2 consisting substantially of formaldehyde and water; c) stream B1 and a recycle stream D1 comprising trioxane, water and formaldehyde are fed to a second low-pressure distillation column and distilled at a pressure of from 0.1 to 2.
    Type: Application
    Filed: July 19, 2006
    Publication date: August 14, 2008
    Applicant: BASF SE
    Inventors: Neven Lang, Eckhard Stroefer, Achim Stammer, Thorsten Friese, Markus Siegert, Hans Hasse, Thomas Grutzner, Sergej Blagov
  • Publication number: 20080167439
    Abstract: Process for preparation of polyoxymethylenes via polymerization of the monomers a) in the presence of cationic initiators b), and also, if appropriate, in the presence of regulators c), and subsequent deactivation and isolation of the polymer, which comprises undertaking the polymerization in a tubular reactor with static mixing elements and with a mixing zone, a polymerization zone, and a deactivation zone, the diameter of the tubular reactor in the mixing zone being <90% of the diameter in the polymerization zone.
    Type: Application
    Filed: November 28, 2005
    Publication date: July 10, 2008
    Applicant: BASF AKTIENGESELLSCHAFT
    Inventors: Jens Assmann, Knut Zollner, Johannes Heinemann, Elmar Stockelmann, Achim Stammer
  • Publication number: 20070293688
    Abstract: The present invention relates to a process for distillatively removing pure trioxane from a feedstream (I) comprising trioxane in a proportion of at least 50% by weight, based on the total weight of the feedstream (I), and additionally formaldehyde and water, which comprises feeding the feedstream I and a further aqueous stream (II) which does not contain any components extraneous to the feedstream to a dividing wall column (TWK1) having a dividing wall TW which is arranged substantially perpendicularly and divides the column interior into a feed region (A1), a withdrawal reaction (B1), an upper combined column region (C1) and a lower combined column region (D1), and drawing off from the first dividing wall column (TWK1) a bottom stream (III) comprising pure trioxane and a sidestream (IV) at the withdrawal region (B1), comprising pure water.
    Type: Application
    Filed: August 18, 2005
    Publication date: December 20, 2007
    Applicant: BASF Aktiengesellchaft
    Inventors: Markus Siegert, Neven Lang, Eckhard Stroefer, Achim Stammer, Thorsten Friese
  • Publication number: 20070293689
    Abstract: Processes are disclosed comprising: (a) reacting an aqueous formaldehyde solution in a reactor in the presence of a suitable catalyst to obtain a reaction product mixture comprising trioxane, formaldehyde and water; (b) distilling the reaction product mixture to form a top stream comprising crude trioxane; and (c) treating the top stream in one or more additional stages to form pure trioxane; wherein an aqueous sidestream is drawn off during the distilling of the reaction mixture.
    Type: Application
    Filed: October 20, 2005
    Publication date: December 20, 2007
    Applicant: BASF Aktiengesellschaft
    Inventors: Markus Siegert, Neven Lang, Eckhard Stroefer, Achim Stammer, Thorsten Friese
  • Publication number: 20070272540
    Abstract: A process for removing trioxane from a use stream I of formaldehyde, trioxane and water, by a) providing a use stream I which comprises formaldehyde as the main component and trioxane and water as the secondary components, b) mixing the use stream I with a recycle stream VII which comprises trioxane as the main component and formaldehyde and water as the secondary components to obtain a feed stream Ia which comprises formaldehyde as the main component and trioxane and water as the secondary components, c) distilling the use stream Ia in a first distillation stage at a pressure of from 0.1 to 2.5 bar to obtain a stream II which comprises formaldehyde as the main component and water as the secondary component, and a stream III which comprises trioxane as the main component and water and formaldehyde as the secondary components, d) distilling the stream III, optionally after removing low boilers from the stream III in a low boiler removal stage, in a second distillation stage at a pressure of from 0.2 to 17.
    Type: Application
    Filed: December 21, 2004
    Publication date: November 29, 2007
    Applicant: BASF Aktiengesellschaft
    Inventors: Markus Siegert, Neven Lang, Eckhard Stroefer, Achim Stammer, Thorsten Friese, Hans Hasse
  • Publication number: 20070191588
    Abstract: A process for removing residual monomers from polyoxymethylene homo- or copolymers, comprising the following process steps: a) the residual monomers are removed in gaseous form as vapors from the polymer in a devolatilization apparatus, b) the residual monomer vapors are removed through a vapor pipe, c) the residual monomers are condensed from the vapors in a condensation apparatus at from 1.09 to 102.4 bar and from 102 to 230° C., the temperature not falling below 102° C. at any point of the condensation apparatus, and those surfaces of the condensation apparatus which come into contact with the vapors being coated with a liquid film of condensed residual monomers.
    Type: Application
    Filed: May 17, 2005
    Publication date: August 16, 2007
    Inventors: Claudius Schwittay, Elmar Stockelmann, Johannes Heinemann, Knut Zollner, Achim Stammer
  • Publication number: 20070155972
    Abstract: A process for removing trioxane from a mixture I of formaldehyde, trioxane and water, by a) distilling the mixture I in a first distillation stage at a pressure of from 0.1 to 2 bar to obtain a stream II which comprises formaldehyde and a stream III which comprises predominantly trioxane and additionally water and formaldehyde, b) mixing the stream III with a recycle stream VII which comprises predominantly trioxane and additionally water and formaldehyde to obtain a stream IIIa which comprises predominantly trioxane and additionally water and formaldehyde, c) distilling the stream IIIa, if appropriate after removing low boilers from the stream III or IIIa in a further distillation stage, in a second distillation stage at a pressure of from 0.2 to 10 bar, the pressure in the second distillation stage being at least 0.
    Type: Application
    Filed: December 21, 2004
    Publication date: July 5, 2007
    Applicant: BASF Aktiengesellschaft
    Inventors: Neven Lang, Eckhard Stroefer, Achim Stammer, Thorsten Friese, Markus Siegert, Michael Ott, Hans Hasse, Thomas Grutzner, Sergej Blagov
  • Patent number: 6809224
    Abstract: Formaldehyde is removed by distillation from reaction solutions containing a methlolated alkanal which was obtained from the reaction of formaldehyde with an alkanal which has at least one acidic hydrogen atom &agr; to the carbonyl function or from the reaction of a 2-alkylacrolein or acrolein with water and formaldehyde, by a process in which this reaction was carried out in the presence of catalytic amounts of organic amine. The process permits the improved removal of formaldehyde from the reaction mixture and furthermore facilitates the hydrogenation of the alkanals thus obtained to give polyols.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: October 26, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Matthias Dernbach, Detlef Kratz, Achim Stammer, Gerhard Schulz
  • Publication number: 20040150123
    Abstract: A process is proposed for the distillation or reactive distillation of a mixture that comprises at least one toxic component, the process being carried out in a column containing a structured packing, having at least one packing layer (1) having a lower end (2) and an upper end (3), the packing layer having an internal geometry varying over its height, in such a manner that in the distillation or reactive distillation, in a first, lower region (6) of the packing layer (1) a bubbling layer having a predominantly disperse gas phase can be established and simultaneously in a second, upper region (7) of the packing layer (1) a film flow having a predominantly continuous gas phase can be established.
    Type: Application
    Filed: November 12, 2003
    Publication date: August 5, 2004
    Inventors: Eckhard Strofer, Gerd Kaibel, Achim Stammer, Carsten Oost, Martin Sohn, Manfred Stroezel, Walter Dobler