Patents by Inventor Adam Blair

Adam Blair has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12164048
    Abstract: A radio frequency identification (RFID) system includes an array of antennas to distinguish line-of-sight (LOS) paths from non-line-of-sight (NLOS) paths. The distance between adjacent antennas in the array of antennas is less than half the wavelength of the radio frequency (RF) signal of the system. Each antenna in the antenna array is also digitally controlled to change relative phase difference among the antennas, thereby allowing digital steering of the array of antennas across angles of arrival (AOAs) between 0 and ?. The digital steering generates a plot of signal amplitudes as a function of AOAs. LOS paths are distinguished from NLOS paths based on the shapes (e.g., depth, gradient, etc.) of local extremes (e.g., maxima or minima) in the plot.
    Type: Grant
    Filed: November 22, 2021
    Date of Patent: December 10, 2024
    Assignee: Automaton, Inc.
    Inventors: Spencer Hewett, Adam Blair, Ken Seiff, Michael Murphy, Mark Wieman, Tamara Adlin
  • Patent number: 12148999
    Abstract: Provided herein are various enhancements for antenna systems and directed radio frequency energy structures. In one example, an apparatus includes a baseplate, an antenna array comprising a plurality of Vivaldi antenna elements arranged about an axis perpendicular to the baseplate, and feed elements coupled to each of the Vivaldi antenna elements through the baseplate.
    Type: Grant
    Filed: July 8, 2021
    Date of Patent: November 19, 2024
    Assignee: Lockheed Martin Corporation
    Inventors: Thomas Henry Hand, Joshua David Gustafson, Adam Blair Hess, Thomas Patrick Cencich, Braiden T. Olds
  • Patent number: 12117548
    Abstract: A radio frequency identification (RFID) system includes an array of antennas to distinguish line-of-sight (LOS) paths from non-line-of-sight (NLOS) paths. The distance between adjacent antennas in the array of antennas is less than half the wavelength of the radio frequency (RF) signal of the system. Each antenna in the antenna array is also digitally controlled to change relative phase difference among the antennas, thereby allowing digital steering of the array of antennas across angles of arrival (AOAs) between 0 and ?. The digital steering generates a plot of signal amplitudes as a function of AOAs. LOS paths are distinguished from NLOS paths based on the shapes (e.g., depth, gradient, etc.) of local extremes (e.g., maxima or minima) in the plot.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: October 15, 2024
    Assignee: Automaton, Inc.
    Inventors: Spencer Hewett, Adam Blair, Ken Seiff, Michael Murphy, Mark Wieman, Tamara Adlin
  • Publication number: 20240330614
    Abstract: A radio-frequency identification (RFID) tag reader interrogates a passive RFID tag by transmitting a signal to the tag, then detecting a much weaker reply at the same carrier frequency from the tag. Unfortunately, self-interference caused by signal leakage within the reader or crosstalk among the reader's antenna elements can make the reply more difficult to detect and limit the range at which the reader can sense tags. A self-interference cancellation circuit in the reader reduces or suppresses the effects of signal leakage and crosstalk, enabling detection of weaker tag replies. The self-interference cancellation circuit can calibrate itself before each transmission to ensure good performance. This improves the reader's sensitivity, increases the reader's range, reduces the reader's power consumption, and/or reduces the minimum required dynamic range of the analog-to-digital converters (ADCs) that digitize the received tag replies.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 3, 2024
    Applicant: Automaton, Inc.
    Inventors: Joe Mueller, Adam Blair, Jeff Goos
  • Publication number: 20240295623
    Abstract: A radio frequency identification (RFID) system includes an array of antennas to distinguish line-of-sight (LOS) paths from non-line-of-sight (NLOS) paths. The distance between adjacent antennas in the array of antennas is less than half the wavelength of the radio frequency (RF) signal of the system. Each antenna in the antenna array is also digitally controlled to change relative phase difference among the antennas, thereby allowing digital steering of the array of antennas across angles of arrival (AOAs) between 0 and ?. The digital steering generates a plot of signal amplitudes as a function of AOAs. LOS paths are distinguished from NLOS paths based on the shapes (e.g., depth, gradient, etc.) of local extremes (e.g., maxima or minima) in the plot.
    Type: Application
    Filed: May 9, 2024
    Publication date: September 5, 2024
    Applicant: Automaton, Inc.
    Inventors: Spencer Hewett, Adam Blair, Ken Seiff, Michael Murphy, Mark Wieman, Tamara Adlin
  • Patent number: 12069798
    Abstract: Enhanced components and assemblies for connector-less radio frequency (RF) interconnect systems are provided. One example includes two circuit boards each with a broadside coupling feature comprising a tapered circuit board trace having a terminal portion. The circuit boards are positioned in close proximity to establish a desired gap, and a dielectric material is positioned within the gap between circuit boards. The broadside coupling features of the circuit boards are then configured to convey RF signals over the gap without electrical contact.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: August 20, 2024
    Assignee: LOCKHEED MARTIN CORPORATION
    Inventors: Thomas Henry Hand, Joshua David Gustafson, Joseph M. Torres, Aaron Christopher Rothlisberger, Roger Douglas Hasse, Adam Blair Hess, Madison P. Gast, Braiden T. Olds, Colton Brent Martin
  • Patent number: 12013474
    Abstract: A radio frequency identification (RFID) system includes an array of antennas to distinguish line-of-sight (LOS) paths from non-line-of-sight (NLOS) paths. The distance between adjacent antennas in the array of antennas is less than half the wavelength of the radio frequency (RF) signal of the system. Each antenna in the antenna array is also digitally controlled to change relative phase difference among the antennas, thereby allowing digital steering of the array of antennas across angles of arrival (AOAs) between 0 and ?. The digital steering generates a plot of signal amplitudes as a function of AOAs. LOS paths are distinguished from NLOS paths based on the shapes (e.g., depth, gradient, etc.) of local extremes (e.g., maxima or minima) in the plot.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: June 18, 2024
    Assignee: Automaton, Inc.
    Inventors: Spencer Hewett, Adam Blair, Ken Seiff, Michael Murphy, Mark Wieman, Tamara Adlin
  • Publication number: 20240193381
    Abstract: Radio-frequency identification (RFID) systems use readers to query and locate passive RFID tags in stores, warehouses, and other environments. A signal from the reader powers up the tag, which modulates and backscatters the signal toward the reader. Unfortunately, the maximum permitted RF signal power, self-interference at the reader, tag sensitivity, and channel loss limit the range at which readers can detect and locate tags. Using multiple readers simultaneously circumvents these limits. When used together, each reader transmits a signal to a tag in turn, and all of the readers listen for each of the tag's responses. The readers that are not transmitting do not experience self-interference and so can detect responses at lower power levels (longer ranges). Because the readers are at different locations, they measure different angles of arrival (AOAs) for each response. These simultaneous measurements can be used to locate each tag faster and with higher fidelity.
    Type: Application
    Filed: April 25, 2022
    Publication date: June 13, 2024
    Applicant: Automaton, Inc.
    Inventors: Thomas A. Brown, III, Joe Mueller, Adam Blair, Spencer Hewett, Prokopios Panagiotou
  • Patent number: 11936112
    Abstract: Provided herein are various enhancements for antenna systems and directed radio frequency energy structures. In one example, an apparatus includes an antenna array comprising a plurality of antenna elements formed by waveguide structures embedded within a substrate and positioned about a longitudinal axis of the substrate to form at least two concentric ring arrangements of antenna elements. Apertures of the waveguide structures are configured to emit or receive radio frequency (RF) energy generally along the longitudinal axis. Feed elements are coupled to each of the waveguide structures on an end opposite of the apertures, and configured to couple the RF energy for the antenna array.
    Type: Grant
    Filed: May 5, 2022
    Date of Patent: March 19, 2024
    Assignee: Lockheed Martin Corporation
    Inventors: Thomas Henry Hand, Joshua David Gustafson, Adam Blair Hess, Thomas Patrick Cencich, Braiden T. Olds, Joseph M. Torres, Erik Lier
  • Patent number: 11408965
    Abstract: A radio frequency identification (RFID) system includes an array of antennas to distinguish line-of-sight (LOS) paths from non-line-of-sight (NLOS) paths. The distance between adjacent antennas in the array of antennas is less than half the wavelength of the radio frequency (RF) signal of the system. Each antenna in the antenna array is also digitally controlled to change relative phase difference among the antennas, thereby allowing digital steering of the array of antennas across angles of arrival (AOAs) between 0 and ?. The digital steering generates a plot of signal amplitudes as a function of AOAs. LOS paths are distinguished from NLOS paths based on the shapes (e.g., depth, gradient, etc.) of local extremes (e.g., maxima or minima) in the plot.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: August 9, 2022
    Assignee: Automaton, Inc.
    Inventors: Spencer Hewett, Adam Blair, Ken Seiff, Michael Murphy, Mark Wieman, Tamara Adlin
  • Publication number: 20220082651
    Abstract: A radio frequency identification (RFID) system includes an array of antennas to distinguish line-of-sight (LOS) paths from non-line-of-sight (NLOS) paths. The distance between adjacent antennas in the array of antennas is less than half the wavelength of the radio frequency (RF) signal of the system. Each antenna in the antenna array is also digitally controlled to change relative phase difference among the antennas, thereby allowing digital steering of the array of antennas across angles of arrival (AOAs) between 0 and ?. The digital steering generates a plot of signal amplitudes as a function of AOAs. LOS paths are distinguished from NLOS paths based on the shapes (e.g., depth, gradient, etc.) of local extremes (e.g., maxima or minima) in the plot.
    Type: Application
    Filed: November 22, 2021
    Publication date: March 17, 2022
    Applicant: Automaton, Inc.
    Inventors: Spencer Hewett, Adam Blair, Ken Seiff, Michael Murphy, Mark Wieman, Tamara Adlin
  • Patent number: 11215691
    Abstract: A radio frequency identification (RFID) system includes an array of antennas to distinguish line-of-sight (LOS) paths from non-line-of-sight (NLOS) paths. The distance between adjacent antennas in the array of antennas is less than half the wavelength of the radio frequency (RF) signal of the system. Each antenna in the antenna array is also digitally controlled to change relative phase difference among the antennas, thereby allowing digital steering of the array of antennas across angles of arrival (AOAs) between 0 and ?. The digital steering generates a plot of signal amplitudes as a function of AOAs. LOS paths are distinguished from NLOS paths based on the shapes (e.g., depth, gradient, etc.) of local extremes (e.g., maxima or minima) in the plot.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: January 4, 2022
    Assignee: Automaton, Inc.
    Inventors: Spencer Hewett, Adam Blair, Ken Seiff, Michael Murphy, Mark Wieman, Tamara Adlin
  • Publication number: 20210199748
    Abstract: A radio frequency identification (RFID) system includes an array of antennas to distinguish line-of-sight (LOS) paths from non-line-of-sight (NLOS) paths. The distance between adjacent antennas in the array of antennas is less than half the wavelength of the radio frequency (RF) signal of the system. Each antenna in the antenna array is also digitally controlled to change relative phase difference among the antennas, thereby allowing digital steering of the array of antennas across angles of arrival (AOAs) between 0 and ?. The digital steering generates a plot of signal amplitudes as a function of AOAs. LOS paths are distinguished from NLOS paths based on the shapes (e.g., depth, gradient, etc.) of local extremes (e.g., maxima or minima) in the plot.
    Type: Application
    Filed: March 12, 2021
    Publication date: July 1, 2021
    Inventors: Spencer Hewett, Adam Blair, Ken Seiff, Michael Murphy, Mark Wieman, Tamara Adlin
  • Publication number: 20210199747
    Abstract: A radio frequency identification (RFID) system includes an array of antennas to distinguish line-of-sight (LOS) paths from non-line-of-sight (NLOS) paths. The distance between adjacent antennas in the array of antennas is less than half the wavelength of the radio frequency (RF) signal of the system. Each antenna in the antenna array is also digitally controlled to change relative phase difference among the antennas, thereby allowing digital steering of the array of antennas across angles of arrival (AOAs) between 0 and 71 The digital steering generates a plot of signal amplitudes as a function of AOAs. LOS paths are distinguished from NLOS paths based on the shapes (e.g., depth, gradient, etc.) of local extremes (e.g., maxima or minima) in the plot.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 1, 2021
    Inventors: Spencer Hewett, Adam Blair, Ken Seiff, Michael Murphy, Mark Wieman, Tamara Adlin
  • Publication number: 20200124696
    Abstract: A radio frequency identification (RFID) system includes an array of antennas to distinguish line-of-sight (LOS) paths from non-line-of-sight (NLOS) paths. The distance between adjacent antennas in the array of antennas is less than half the wavelength of the radio frequency (RF) signal of the system. Each antenna in the antenna array is also digitally controlled to change relative phase difference among the antennas, thereby allowing digital steering of the array of antennas across angles of arrival (AOAs) between 0 and ?. The digital steering generates a plot of signal amplitudes as a function of AOAs. LOS paths are distinguished from NLOS paths based on the shapes (e.g., depth, gradient, etc.) of local extremes (e.g., maxima or minima) in the plot.
    Type: Application
    Filed: December 17, 2019
    Publication date: April 23, 2020
    Inventors: Spencer Hewett, Adam Blair, Ken Seiff, Michael Murphy, Mark Wieman, Tamara Adlin
  • Publication number: 20200096599
    Abstract: A radio frequency identification (RFID) system includes an array of antennas to distinguish line-of-sight (LOS) paths from non-line-of-sight (NLOS) paths. The distance between adjacent antennas in the array of antennas is less than half the wavelength of the radio frequency (RF) signal of the system. Each antenna in the antenna array is also digitally controlled to change relative phase difference among the antennas, thereby allowing digital steering of the array of antennas across angles of arrival (AOAs) between 0 and ?. The digital steering generates a plot of signal amplitudes as a function of AOAs. LOS paths are distinguished from NLOS paths based on the shapes (e.g., depth, gradient, etc.) of local extremes (e.g., maxima or minima) in the plot.
    Type: Application
    Filed: September 24, 2019
    Publication date: March 26, 2020
    Inventors: Spencer Hewett, Adam Blair, Ken Seiff, Michael Murphy, Mark Wieman, Tamara Adlin
  • Patent number: 10423636
    Abstract: Disclosed are various embodiments for identifying related collections of items within an item universe. Related collections of items can be identified based upon title similarity or a degree of overlap between collections of items. Additionally, relationships between collections of items can be generated if the collections have identical or nearly identical collection titles.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: September 24, 2019
    Assignee: Amazon Technologies, Inc.
    Inventors: Duc Tung Nguyen, Adam Blair Kelly, Timothy Peter Munro, Thomas Nicol, Andrew Norimasa Nishigaya, Noel O'Brien
  • Publication number: 20190019139
    Abstract: An example apparatus to monitor a space is disclosed. The example apparatus includes a database to record a time when a first data signal is received from a first RFID tag of a plurality of RFID tags and record data contained in the first data signal from the first RFID tag. The example apparatus further includes one or more processors to attempt to match the first RFID tag to sales information based on the time and the data contained within the first data signal.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 17, 2019
    Inventors: John Belstner, Adam Blair
  • Patent number: 10115072
    Abstract: A radio frequency identification (RFID) reader is disclosed that allows for selective deep scans of RFID tags. The RFID reader may include a motion detection sensor, a radio frequency transceiver configured to transmit RF energy at first and second frequencies, and a processor. The processor may perform the following steps: (1) when motion is detected by the sensor, commanding the transceiver to transmit RF energy at the first RFID profile; and (2) when motion has not been detect for a predetermined time period, commanding the transceiver to transmit RF energy at the second RFID profile. A method for using the RFID reader to perform selective deep scanning is also disclosed.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: October 30, 2018
    Assignee: INTEL CORPORATION
    Inventors: Dan Stokes, John Belstner, Adam Blair
  • Patent number: 10095996
    Abstract: A radio frequency identification (RFID) system for monitoring a space is disclosed. The system may include a controller connected with a plurality of RFID readers, where each reader can detect data signals from a plurality of RFID tags attached with objects. The objects may be part of an object category. The system may also have a database connected with the controller that records a time when the data signal is received from each tag in the plurality, and the data contained in the data signal from each tag in the plurality. The system may include a processor that can perform an inventory analysis of the objects based on a confidence probability curve. This curve may be a decaying function that may be based on various probabilities. Methods for using the confidence probability curve are also disclosed.
    Type: Grant
    Filed: February 27, 2017
    Date of Patent: October 9, 2018
    Assignee: INTEL CORPORATION
    Inventors: John Belstner, Adam Blair