Patents by Inventor Adam Cockrell

Adam Cockrell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11980774
    Abstract: Devices and related methods for impinging light on tissue to induce one or more biological effects, and more particularly illumination devices and related methods for phototherapeutic light treatments in the presence of vitamins are disclosed. Biological effects may include at least one of inactivating and inhibiting growth of one or more combinations of microorganisms and pathogens, including but not limited to viruses. Phototherapeutic light treatments in the presence of vitamins may involve providing one or more vitamins in the form of a coating or film on a surface of a target tissue and irradiating the target tissue with light. By performing the phototherapeutic light treatment in the presence of vitamins, efficacy of the light treatment may be improved, thereby reducing viral loads and/or reducing doses of light received by the target tissue.
    Type: Grant
    Filed: August 5, 2021
    Date of Patent: May 14, 2024
    Assignee: KNOW Bio, LLC
    Inventors: Adam Cockrell, Nathan Stasko, Jacob Kocher
  • Publication number: 20240075312
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Biological effects may include upregulating and downregulating inflammatory immune response molecules within a target tissue. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths.
    Type: Application
    Filed: November 14, 2023
    Publication date: March 7, 2024
    Inventors: Adam Cockrell, Jacob Kocher, David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Rebecca McDonald
  • Publication number: 20240024699
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.
    Type: Application
    Filed: October 4, 2023
    Publication date: January 25, 2024
    Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald, James Michael Lay
  • Publication number: 20230302293
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an antiinflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.
    Type: Application
    Filed: May 23, 2023
    Publication date: September 28, 2023
    Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald, James Michael Lay
  • Patent number: 11752359
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: September 12, 2023
    Assignee: KNOW Bio, LLC
    Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald, James Michael Lay
  • Patent number: 11712578
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: August 1, 2023
    Assignee: KNOW Bio, LLC
    Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald, James Michael Lay
  • Patent number: 11684798
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.
    Type: Grant
    Filed: August 24, 2021
    Date of Patent: June 27, 2023
    Assignee: KNOW Bio, LLC
    Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald, James Michael Lay
  • Publication number: 20230043538
    Abstract: Devices and related methods for impinging light on tissue to induce one or more biological effects, and more particularly illumination devices and related methods for phototherapeutic light treatments in the presence of vitamins are disclosed. Biological effects may include at least one of inactivating and inhibiting growth of one or more combinations of microorganisms and pathogens, including but not limited to viruses. Phototherapeutic light treatments in the presence of vitamins may involve providing one or more vitamins in the form of a coating or film on a surface of a target tissue and irradiating the target tissue with light. By performing the phototherapeutic light treatment in the presence of vitamins, efficacy of the light treatment may be improved, thereby reducing viral loads and/or reducing doses of light received by the target tissue.
    Type: Application
    Filed: August 5, 2021
    Publication date: February 9, 2023
    Inventors: Adam Cockrell, Nathan Stasko, Jacob Kocher
  • Publication number: 20220189342
    Abstract: Devices and methods for impinging light on tissue to induce one or more biological effects, and more particularly enhanced testing and characterization techniques for phototherapeutic light treatments are disclosed. Such testing and characterization techniques may be particularly useful in the evaluation and development of light-based treatments for various infectious diseases, including multiple variants of SARS-CoV-2. In particular aspects, testing and characterization techniques are related to the direct testing of differentiated tissue models of human airway epithelia that have been exposed to various pathogens. Phototherapeutic light treatments and corresponding treatment protocols for light are also described that not only inactivate SARS-COV-2 variants in cell-free suspensions, but also inhibit SARS-CoV-2 infections at multiple stages of infection in tissue models of human airway epithelia in a variant-agnostic manner.
    Type: Application
    Filed: November 1, 2021
    Publication date: June 16, 2022
    Inventors: David T. Emerson, Nathan Stasko, Jacob Kocher, Adam Cockrell
  • Publication number: 20220023660
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.
    Type: Application
    Filed: August 24, 2021
    Publication date: January 27, 2022
    Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald
  • Publication number: 20210379400
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.
    Type: Application
    Filed: August 24, 2021
    Publication date: December 9, 2021
    Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald
  • Patent number: 11147984
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.
    Type: Grant
    Filed: December 10, 2020
    Date of Patent: October 19, 2021
    Assignee: KNOW Bio, LLC
    Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald
  • Publication number: 20210290971
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Biological effects may include upregulating and downregulating inflammatory immune response molecules within a target tissue. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths.
    Type: Application
    Filed: February 11, 2021
    Publication date: September 23, 2021
    Inventors: Adam Cockrell, Jacob Kocher, David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Rebecca McDonald
  • Publication number: 20210290974
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.
    Type: Application
    Filed: December 10, 2020
    Publication date: September 23, 2021
    Inventors: David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Antony Paul van de Ven, Nathan Stasko, F. Neal Hunter, Adam Cockrell, Rebecca McDonald
  • Publication number: 20210290970
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.
    Type: Application
    Filed: January 29, 2021
    Publication date: September 23, 2021
    Inventors: F. Neal Hunter, Antony Paul van de Ven, Nathan Stasko, David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Adam Cockrell, Rebecca McDonald
  • Publication number: 20210290975
    Abstract: Illumination devices for impinging light on tissue, for example within a body cavity of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, increasing endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and tissues with increased efficacy and reduced cytotoxicity.
    Type: Application
    Filed: January 29, 2021
    Publication date: September 23, 2021
    Inventors: F. Neal Hunter, Antony Paul van de Ven, Nathan Stasko, David T. Emerson, Michael John Bergmann, Thomas Matthew Womble, Adam Cockrell, Rebecca McDonald
  • Publication number: 20210138259
    Abstract: Methods and related devices for impinging light on tissue, for example within a body of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores of nitric oxide, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices and methods for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and targeted tissues with increased efficacy and reduced cytotoxicity.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 13, 2021
    Inventors: Nathan Stasko, David T. Emerson, Adam Cockrell, F. Neal Hunter, Michael John Bergmann, Rebecca McDonald, Nicholas William Medendorp, JR., Gerald H. Negley, Katelyn P. Reighard
  • Publication number: 20210128937
    Abstract: Methods and related devices for impinging light on tissue, for example within a body of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores of nitric oxide, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices and methods for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and targeted tissues with increased efficacy and reduced cytotoxicity.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Inventors: Nathan Stasko, David T. Emerson, Adam Cockrell, F. Neal Hunter, Michael John Bergmann, Rebecca McDonald, Nicholas William Medendorp, JR., Gerald H. Negley, Katelyn P. Reighard
  • Publication number: 20210128936
    Abstract: Methods and related devices for impinging light on tissue, for example within a body of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores of nitric oxide, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices and methods for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and targeted tissues with increased efficacy and reduced cytotoxicity.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Inventors: Nathan Stasko, David T. Emerson, Adam Cockrell, F. Neal Hunter, Michael John Bergmann, Rebecca McDonald, Nicholas William Medendorp, JR., Gerald H. Negley, Katelyn P. Reighard
  • Publication number: 20210128938
    Abstract: Methods and related devices for impinging light on tissue, for example within a body of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores of nitric oxide, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices and methods for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and targeted tissues with increased efficacy and reduced cytotoxicity.
    Type: Application
    Filed: January 13, 2021
    Publication date: May 6, 2021
    Inventors: Nathan Stasko, David T. Emerson, Adam Cockrell, F. Neal Hunter, Michael John Bergmann, Rebecca McDonald, Nicholas William Medendorp, JR., Gerald H. Negley, Katelyn P. Reighard