Patents by Inventor Adam D. Haag

Adam D. Haag has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230256820
    Abstract: A display system includes a display panel configured to emit polarized light having a first polarization state and substantially distinct blue, green and red emission spectra having respective blue, green and red full widths at half maxima (FWHMs). The display system includes a reflective polarizer configured to reflect the polarized image light as a first reflected polarized image light. For substantially normally incident light and for the first polarization state, the reflective polarizer has a reflectance of greater than about 60% across each of the blue and red FWHMs, and a transmittance of at least about 50% for at least a first wavelength between the FWHMs of the blue and green emission spectra, and for at least a second wavelength between the FWHMs of the green and red emission spectra.
    Type: Application
    Filed: April 7, 2021
    Publication date: August 17, 2023
    Inventors: Adam D. Haag, Stephan J. Pankratz
  • Patent number: 11726245
    Abstract: A partial reflector including a plurality of optical repeat units where each optical repeat unit includes first and second polymer layers is described. A refractive index difference between the first and second polymer layers along a first axis may be Any, a refractive index difference between the first and second polymer layers along an orthogonal second axis may be ?ƒ?, where |???| is at least 0.1 and |?ny| is no more than 0.04. The optical repeat units may have a smallest optical thickness T1 proximate a first side of the optical stack and a largest optical thickness T2 proximate an opposite second side of the optical stack, where (T2?T1)/(T2+T1) is in a range of 0.05 to 0.2, and T2 is at least 350 nm and no more 1250 nm. The partial reflector may be used in a circular polarizer for correcting color shift with view angle in a display.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: August 15, 2023
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Adam D. Haag, Sun-Yong Park, Timothy J. Nevitt, Brianna N. Wheeler, Jody L. Peterson
  • Publication number: 20230184996
    Abstract: An optical metasurface film includes a flexible polymeric film having a first major surface, a patterned polymer layer having a first surface proximate to the first major surface of the flexible polymeric film and having a second nanostructured surface opposite the first surface, and a refractive index contrast layer including a refractive index contrast material adjacent to the nanostructured surface of the patterned polymer layer forming a nanostructured bilayer with a nano structured interface. The nanostructured bilayer comprising a plurality of nanostructures disposed on the flexible polymeric film. The nanostructured bilayer imparts a light phase shift that varies as a function of position of the nano structured bilayer on the flexible polymeric film. The light phase shift of the nanostructured bilayer defines a predetermined operative phase profile of the optical metasurface film. A light reflecting layer is in optical communication with the nano structured bilayer.
    Type: Application
    Filed: April 9, 2021
    Publication date: June 15, 2023
    Inventors: Martin B. WOLK, Robert L. BROTT, Karl K. STENSVAD, Vadim N. SAVVATEEV, James M. NELSON, Lin ZHAO, Caitlin RACE, Adam D. HAAG
  • Publication number: 20230176419
    Abstract: A display system includes a light source configured to emit light from a light exit surface, the emitted light having an emitted wavelength. An optical filter is disposed on the light exit surface of the light source. One or more light converting films are disposed between the optical filter and the light exit surface of the light source. The one or more light converting films are configured to receive the emitted light from the light source and convert at least portions of the received emitted light to blue, green, and red lights having respective blue, green and red wavelengths. For a substantially normally incident light and for at least an in-plane first polarization state, the optical filter reflects more than about 80% of the incident light having the emitted wavelength, and transmits greater than about 60% of the incident light for each of the blue, green and red wavelengths.
    Type: Application
    Filed: December 2, 2022
    Publication date: June 8, 2023
    Inventors: Yu Hsin Lu, Gary T. Boyd, Matthew B. Johnson, Ryan T. Fabick, Carl A. Stover, Adam D. Haag
  • Publication number: 20230099780
    Abstract: A reflective polarizer has substantially distinct blue, green and red-infrared reflection bands for substantially normally incident light. A display system includes a display panel including blue, green and red light emitting pixels having respective blue, green and red peak wavelengths and respective blue, green and red FWHMs; and the reflective polarizer disposed on the light emitting pixels. The reflective polarizer: reflects at least about 60% of the incident light for each of the blue and green peak wavelengths and at least about 40% of the incident light for the red peak wavelength for a first polarization state; transmits at least about 60% of the incident light for each of the blue, green and red peak wavelengths for an orthogonal second polarization state; and has an absorption peak at a wavelength between the green and red FWHMs.
    Type: Application
    Filed: March 4, 2021
    Publication date: March 30, 2023
    Inventors: Seo-Hern Lee, Adam D. Haag, Martin E. Denker, Timothy J. Nevitt
  • Publication number: 20230085544
    Abstract: An optical system for displaying a virtual image to a viewer includes stacked integral first reflective polarizer and integral second reflective polarizer, a display, and a mirror.
    Type: Application
    Filed: January 27, 2021
    Publication date: March 16, 2023
    Inventors: Craig R. Schardt, Adam D. Haag, Stephen J. Willet
  • Publication number: 20230074182
    Abstract: A reflective polarizer is such that for substantially normally incident light and for blue, green and red wavelengths, the reflective polarizer: has a transmission spectrum including a blue transmission stop band for the incident light polarized along a first direction; reflects at least about 50% of the incident light polarized along the first direction for the blue wavelength; transmits at least about 50% of the incident light polarized along an orthogonal second direction for each of the blue, green and red wavelengths; and transmits between about 50% and about 95% of the incident light polarized along the first direction for each of the green and red wavelengths. The blue transmission stop band has opposing first and second band edges having respective first and second slope magnitudes S1 and S2, where S1/S2?2. A display system includes the reflective polarizer disposed on a display panel.
    Type: Application
    Filed: February 1, 2021
    Publication date: March 9, 2023
    Inventors: Adam D. Haag, Martin E. Denker, Timothy J. Nevitt
  • Publication number: 20230048794
    Abstract: Optical film stacks are described. More particularly, optical film stacks including a half-wave retardation layer are described. Achromatic half-wave retardation layers, including achromatic half-wave layers formed from a quarter-wave and a three-quarters-wave retardation layer, are described. Film stacks including reflective polarizers tuned to reduce wavelength dispersion of the half-wave retardation layer are also described.
    Type: Application
    Filed: October 19, 2022
    Publication date: February 16, 2023
    Inventors: Sun-Yong Park, Song-Geun Lee, Matthew B. Johnson, Adam D. Haag
  • Publication number: 20230025509
    Abstract: A film stack comprises an oriented first layer comprising polyvinyl alcohol disposed on an oriented second layer comprising naphthalene dicarboxylate containing copolyester resin. The oriented second layer has in-plane birefringence ?nxy<0.02.
    Type: Application
    Filed: December 22, 2020
    Publication date: January 26, 2023
    Inventors: Adam D. Haag, Michael A. Johnson, Michelle L. Toy, Brianna N. Wheeler, David T. Yust
  • Publication number: 20220413198
    Abstract: A display system includes a display panel including a plurality light emitting pixels and a reflective polarizer disposed on the light emitting pixels. The reflective polarizer can have a reflection band having a lower overlap with an emission spectrum of red light emitting pixels for substantially normally incident light and a higher overlap with the emission spectrum of the red light emitting pixels for at least one incident angle greater than about 40 degrees. The reflective polarizer can have a reflection band overlapping an emission spectrum of blue light emitting pixels for substantially normally incident light.
    Type: Application
    Filed: December 8, 2020
    Publication date: December 29, 2022
    Inventors: Adam D. Haag, Martin E. Denker, Timothy J. Nevitt
  • Patent number: 11520092
    Abstract: Optical stacks are described. In particular, optical stacks including reflecting-absorbing polarizers and quarter-wave plates are disclosed. The optical core of the optical stack—which includes a reflecting-absorbing polarizer with at least one skin layer including polarizing dye—may be co-extruded or co-stretched.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: December 6, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Matthew B. Johnson, Adam D. Haag, Seong Taek Lee, Brianna N. Nieson, Kristy A. Gillette, Michelle L. Toy
  • Publication number: 20220373728
    Abstract: Optical bodies are described. In particular, optical bodies having a birefringent multilayer optical film and a continuous adhesive layer with a thickness less than 20 micrometers are described. Optical bodies described herein exhibit reduced occurrence and severity of a non-uniformity defect known as “orange peel.
    Type: Application
    Filed: August 1, 2022
    Publication date: November 24, 2022
    Inventors: Karissa L. Eckert, Michelle L. Toy, Adam D. Haag, Matthew B. Johnson, Albert I. Everaerts, Quinn D. Sanford
  • Patent number: 11506926
    Abstract: Optical film stacks are described. More particularly, optical film stacks including a half-wave retardation layer are described. Achromatic half-wave retardation layers, including achromatic half-wave layers formed from a quarter-wave and a three-quarters-wave retardation layer, are described. Film stacks including reflective polarizers tuned to reduce wavelength dispersion of the half-wave retardation layer are also described.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: November 22, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Sun-Yong Park, Song-Geun Lee, Matthew B. Johnson, Adam D. Haag
  • Publication number: 20220357493
    Abstract: A display system is disclosed and includes a display and a reflective polarizer disposed on the display. For substantially normally incident light, for a primary wavelength ?b, the reflective polarizer transmits at least 60% of the incident light having a first polarization state x and reflects at least 60% of the incident light having an orthogonal second polarization state y. For each of a first wavelength ?uv and a second wavelength ?bg, 0<?b-?uv?100 nm#and 0<?bg-?b?100 nm, the reflective polarizer transmits at least 40% of the incident light for each of the first and second polarization states.
    Type: Application
    Filed: September 24, 2020
    Publication date: November 10, 2022
    Inventors: Adam D. Haag, Timothy J. Nevitt, Martin E. Denker
  • Patent number: 11493677
    Abstract: Optical films are disclosed that include a plurality of interference layers. Each interference layer reflects or transmits light primarily by optical interference. The total number of the interference layers is less than about 1000. For a substantially normally incident light in a predetermined wavelength range, the plurality of interference layers has an average optical transmittance greater than about 85% for a first polarization state, an average optical reflectance greater than about 80% for an orthogonal second polarization state, and an average optical transmittance less than about 0.2% for the second polarization state.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: November 8, 2022
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Adam D. Haag, Timothy J. Nevitt, Carl A. Stover, Andrew J. Ouderkirk, Robert D. Taylor, Zhaohui Yang
  • Publication number: 20220299692
    Abstract: An optical system (200) includes an emissive display (220) and a reflective polarizer (100) disposed on the display (220). The display (220) includes a blue pixel (222b) emitting light having a peak at a wavelength ?b. For substantially normally incident light: for the wavelength ?b, the reflective polarizer (100) reflects at least 30% of the incident light having a first polarization state (b) and transmits at least 75% of the incident light having an orthogonal second polarization state(a); and for at least one wavelength ?1 greater than ?b, ?1-?b?50 nm, the reflective polarizer (100) transmits at least 75% of the incident light for each of the first and second polarization states. For the wavelength ?b, the reflective polarizer (100) has a maximum optical transmittance Tmax for light incident at a first incident angle, and an optical transmittance Tmax/2 for light incident at a second incident angle greater than the first incident angle by less than about 50 degrees.
    Type: Application
    Filed: September 27, 2019
    Publication date: September 22, 2022
    Inventors: Fuguo Xu, Adam D. Haag, Martin E. Denker, Timothy J. Nevitt
  • Patent number: 11435616
    Abstract: Optical constructions are disclosed. A disclosed optical construction includes a reflective polarizer layer, and an optical film that is disposed on the reflective polarizer layer. The optical film has an optical haze that is not less than about 50%. Substantial portions of each two neighboring major surfaces in the optical construction are in physical contact with each other. The optical construction has an axial luminance gain that is not less than about 1.2.
    Type: Grant
    Filed: April 6, 2020
    Date of Patent: September 6, 2022
    Assignee: 3M Innovative Properties Company
    Inventors: Encai Hao, Fei Lu, William Blake Kolb, Brian W. Ostlie, Adam D. Haag, Michael Benton Free, William D. Coggio, Michael L. Steiner, Soemantri Widagdo, Kui Chen-Ho, Lan H. Liu, Robert F. Kamrath, Scott M. Tapio, John A. Wheatley, Charles D. Hoyle, Michael F. Weber
  • Publication number: 20220236466
    Abstract: An optical film includes a plurality of alternating first and second polymeric layers, such that the first polymeric layers have a smaller average in-plane index of refraction than the second polymeric layers and the first polymeric layers have a glass transition temperature of at least 107 deg. C. The optical film may be a reflective polarizer. An optical stack includes a linear absorbing polarizer and the reflective polarizer disposed on, and bonded to, the absorbing polarizer. The reflective polarizer has an optical reflectance of at least 60% for a first polarization state and an optical transmittance of at least 60% for an orthogonal second polarization state. When heated at 105 deg. C. for 15 minutes, a difference in shrinkage of the reflective polarizer and the absorbing polarizer along the first and second polarization states is greater than about zero and 0.2%, respectively.
    Type: Application
    Filed: May 20, 2020
    Publication date: July 28, 2022
    Inventors: Adam D. Haag, Yi-Chen Chen, Tze Yuan Wang, Hiroki Matsuda, Michelle L. Toy, Ryan J. Eismin, John F. VanDerlofske, III, David J. McDaniel, Matthew B. Johnson
  • Publication number: 20220163713
    Abstract: A multilayer optical film includes a plurality of polymeric layers arranged sequentially adjacent to each other. A difference in thickness between spaced apart first and second polymeric layers in the plurality of polymeric layers is less than about 10%. Each polymeric layer that is disposed between the first and second polymeric layers has a thickness less than about 400 nm. Each layer in a group of at least three polymeric layers in the plurality of polymeric layers that are disposed between the first and second polymeric layers has a thickness greater than an average thickness of the first and second polymeric layers by about 20% to about 500%. The group of at least three polymeric layers includes at least one pair of immediately adjacent polymeric layers.
    Type: Application
    Filed: May 20, 2020
    Publication date: May 26, 2022
    Inventors: Adam D. Haag, William B. Black, Robert M. Biegler, Matthew B. Johnson, Edward J. Kivel
  • Publication number: 20220146728
    Abstract: An optical film includes a plurality of alternating first and second layers. The first layers have a first in-plane birefringence, the second layers have a second in-plane birefringence, and the second in-plane birefringence is less than the first in-plane birefringence and greater than 0.03. The first layers may include polyethylene terephthalate homopolymer and the second layers may include glycol-modified co(polyethylene terephthalate). The optical film has a shrinkage along a first direction of greater than 4% and a shrinkage along an orthogonal second direction of greater than 3% when heated at 150° C. for 15 minutes. A glass laminate is prepared by disposing the optical film between glass layers and laminating the optical film to the glass layers.
    Type: Application
    Filed: April 1, 2020
    Publication date: May 12, 2022
    Inventors: Adam D. Haag, Brianna N. Wheeler, Matthew B. Johnson, William F. Edmonds