Patents by Inventor Adam D. Henderson

Adam D. Henderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230013210
    Abstract: Systems that may be used for performing a robotic revision knee arthroplasty are disclosed. Such systems can optionally include a processor that can: intraoperatively receive a plurality of position data obtained by a robotic surgical device after a primary implant has been removed from a bone, the plurality of position data correspond to a plurality of landmarks of the bone of a patient, the plurality of landmarks include a position of an intramedullary canal of the bone; select from a database having a plurality of mean models of a corresponding bone a mean model that comprises a best match based upon the plurality of landmarks of the bone; generate an updated model by altering the mean model to fit an anatomy of the bone of the patient based upon the plurality of landmarks; and output to a user interface the updated model for use during the robotic revision knee arthroplasty.
    Type: Application
    Filed: July 14, 2022
    Publication date: January 19, 2023
    Inventors: Yann Facchinello, Vincent Pelletier, Adam H. Sanford, Catherine Leveille, Adam D. Henderson
  • Patent number: 11324598
    Abstract: Methods are disclosed for designing a tibial implant to minimize cortical impingement of a keel or other fixation structure when the tibial implant is implanted in the tibia bone. The design of the keel or other fixation structure on the tibial baseplate can be based on determining a common area between defined cancellous regions of at least two tibia bones. Methods are disclosed for designing a femoral component having a stem extension such that the stem can be sufficiently placed in the diaphysis of the femur when the femoral component is implanted. The method includes determining a canal axis in a femur that creates adequate engagement between a reamer and the diaphysis of the femur.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: May 10, 2022
    Assignee: Zimmer, Inc.
    Inventors: Yifei Dai, Christine Schaerer, Dwight T. Todd, Jeffrey E. Bischoff, Adam D. Henderson
  • Publication number: 20200146830
    Abstract: Methods are disclosed for designing a tibial implant to minimize cortical impingement of a keel or other fixation structure when the tibial implant is implanted in the tibia bone. The design of the keel or other fixation structure on the tibial baseplate can be based on determining a common area between defined cancellous regions of at least two tibia bones. Methods are disclosed for designing a femoral component having a stem extension such that the stem can be sufficiently placed in the diaphysis of the femur when the femoral component is implanted. The method includes determining a canal axis in a femur that creates adequate engagement between a reamer and the diaphysis of the femur.
    Type: Application
    Filed: January 15, 2020
    Publication date: May 14, 2020
    Inventors: Yifei Dai, Christine Schaerer, Dwight T. Todd, Jeffrey E. Bischoff, Adam D. Henderson
  • Patent number: 10575956
    Abstract: Methods are disclosed for designing a tibial implant to minimize cortical impingement of a keel or other fixation structure when the tibial implant is implanted in the tibia bone. The design of the keel or other fixation structure on the tibial baseplate can be based on determining a common area between defined cancellous regions of at least two tibia bones. Methods are disclosed for designing a femoral component having a stem extension such that the stem can be sufficiently placed in the diaphysis of the femur when the femoral component is implanted. The method includes determining a canal axis in a femur that creates adequate engagement between a reamer and the diaphysis of the femur.
    Type: Grant
    Filed: February 7, 2018
    Date of Patent: March 3, 2020
    Assignee: Zimmer, Inc.
    Inventors: Yifei Dai, Christine Schaerer, Dwight T Todd, Jeffrey E. Bischoff, Adam D. Henderson
  • Patent number: 10322004
    Abstract: A prosthetic femoral component (10) for an orthopaedic prosthesis has a canted patellar groove adapted for optimal patella/component interaction, with the component configured to have a medial or lateral cant depending upon the method of implantation. The femoral component defines a distal “component transverse plane,” which is a plane tangent to the distal-most points of the component condyles (12, 14). In a “mechanical” implantation, the component transverse plane is substantially normal to the mechanical femoral axis of the femur after the component has been implanted. Where the femoral component is configured to be “mechanically oriented” in this manner, the component has a medially canted patellar groove. On the other hand, an “anatomic” implantation is one in which, after the component has been implanted, the component transverse plane is substantially parallel to an “anatomic” transverse plane.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: June 18, 2019
    Assignee: ZIMMER GMBH
    Inventors: Cosimo Donno, Adam D. Henderson
  • Publication number: 20180161166
    Abstract: Methods are disclosed for designing a tibial implant to minimize cortical impingement of a keel or other fixation structure when the tibial implant is implanted in the tibia bone. The design of the keel or other fixation structure on the tibial baseplate can be based on determining a common area between defined cancellous regions of at least two tibia bones. Methods are disclosed for designing a femoral component having a stem extension such that the stem can be sufficiently placed in the diaphysis of the femur when the femoral component is implanted. The method includes determining a canal axis in a femur that creates adequate engagement between a reamer and the diaphysis of the femur.
    Type: Application
    Filed: February 7, 2018
    Publication date: June 14, 2018
    Inventors: Yifei Dai, Christine Schaerer, Dwight T. Todd, Jeffrey E. Bischoff, Adam D. Henderson
  • Publication number: 20180092746
    Abstract: A prosthetic femoral component (10) for an orthopaedic prosthesis has a canted patellar groove adapted for optimal patella/component interaction, with the component configured to have a medial or lateral cant depending upon the method of implantation. The femoral component defines a distal “component transverse plane,” which is a plane tangent to the distal-most points of the component condyles (12, 14). In a “mechanical” implantation, the component transverse plane is substantially normal to the mechanical femoral axis of the femur after the component has been implanted. Where the femoral component is configured to be “mechanically oriented” in this manner, the component has a medially canted patellar groove. On the other hand, an “anatomic” implantation is one in which, after the component has been implanted, the component transverse plane is substantially parallel to an “anatomic” transverse plane.
    Type: Application
    Filed: December 7, 2017
    Publication date: April 5, 2018
    Inventors: Cosimo Donno, Adam D. Henderson
  • Patent number: 9925052
    Abstract: Methods are disclosed for designing a tibial implant to minimize cortical impingement of a keel or other fixation structure when the tibial implant is implanted in the tibia bone. The design of the keel or other fixation structure on the tibial baseplate can be based on determining a common area between defined cancellous regions of at least two tibia bones. Methods are disclosed for designing a femoral component having a stem extension such that the stem can be sufficiently placed in the diaphysis of the femur when the femoral component is implanted. The method includes determining a canal axis in a femur that creates adequate engagement between a reamer and the diaphysis of the femur.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: March 27, 2018
    Assignee: Zimmer, Inc.
    Inventors: Yifei Dai, Christine Schaerer, Dwight T Todd, Jeffrey E. Bischoff, Adam D. Henderson
  • Patent number: 9867708
    Abstract: A prosthetic femoral component (10) for an orthopedic prosthesis has a canted patellar groove adapted for optimal patella/component interaction, with the component configured to have a medial or lateral cant depending upon the method of implantation. The femoral component defines a distal “component transverse plane,” which is a plane tangent to the distal-most points of the component condyles (12, 14). In a “mechanical” implantation, the component transverse plane is substantially normal to the mechanical femoral axis of the femur after the component has been implanted. Where the femoral component is configured to be “mechanically oriented” in this manner, the component has a medially canted patellar groove. On the other hand, an “anatomic” implantation is one in which, after the component has been implanted, the component transverse plane is substantially parallel to an “anatomic” transverse plane.
    Type: Grant
    Filed: September 4, 2015
    Date of Patent: January 16, 2018
    Assignee: ZIMMER GMBH
    Inventors: Cosimo Donno, Adam D. Henderson
  • Publication number: 20150374500
    Abstract: A prosthetic femoral component (10) for an orthopaedic prosthesis has a canted patellar groove adapted for optimal patella/component interaction, with the component configured to have a medial or lateral cant depending upon the method of implantation. The femoral component defines a distal “component transverse plane,” which is a plane tangent to the distal-most points of the component condyles (12, 14). In a “mechanical” implantation, the component transverse plane is substantially normal to the mechanical femoral axis of the femur after the component has been implanted. Where the femoral component is configured to be “mechanically oriented” in this manner, the component has a medially canted patellar groove. On the other hand, an “anatomic” implantation is one in which, after the component has been implanted, the component transverse plane is substantially parallel to an “anatomic” transverse plane.
    Type: Application
    Filed: September 4, 2015
    Publication date: December 31, 2015
    Inventors: Cosimo Donno, Adam D. Henderson
  • Patent number: 9173744
    Abstract: A prosthetic femoral component (10) for an orthopaedic prosthesis has a canted patellar groove adapted for optimal patella/component interaction, with the component configured to have a medial or lateral cant depending upon the method of implantation. The femoral component defines a distal “component transverse plane,” which is a plane tangent to the distal-most points of the component condyles (12,14). In a “mechanical” implantation, the component transverse plane is substantially normal to the mechanical femoral axis of the femur after the component has been implanted. Where the femoral component is configured to be “mechanically oriented” in this manner, the component has a medially canted patellar groove. On the other hand, an “anatomic” implantation is one in which, after the component has been implanted, the component transverse plane is substantially parallel to an “anatomic” transverse plane.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 3, 2015
    Assignee: Zimmer GMBH
    Inventors: Cosimo Donno, Adam D. Henderson
  • Publication number: 20150066150
    Abstract: Methods are disclosed for designing a tibial implant to minimize cortical impingement of a keel or other fixation structure when the tibial implant is implanted in the tibia bone. The design of the keel or other fixation structure on the tibial baseplate can be based on determining a common area between defined cancellous regions of at least two tibia bones. Methods are disclosed for designing a femoral component having a stem extension such that the stem can be sufficiently placed in the diaphysis of the femur when the femoral component is implanted. The method includes determining a canal axis in a femur that creates adequate engagement between a reamer and the diaphysis of the femur.
    Type: Application
    Filed: August 28, 2014
    Publication date: March 5, 2015
    Inventors: Yifei Dai, Christine Schaerer, Dwight Todd, Jeffrey E. Bischoff, Adam D. Henderson
  • Publication number: 20130226305
    Abstract: A prosthetic femoral component (10) for an orthopaedic prosthesis has a canted patellar groove adapted for optimal patella/component interaction, with the component configured to have a medial or lateral cant depending upon the method of implantation. The femoral component defines a distal “component transverse plane,” which is a plane tangent to the distal-most points of the component condyles (12,14). In a “mechanical” implantation, the component transverse plane is substantially normal to the mechanical femoral axis of the femur after the component has been implanted. Where the femoral component is configured to be “mechanically oriented” in this manner, the component has a medially canted patellar groove. On the other hand, an “anatomic” implantation is one in which, after the component has been implanted, the component transverse plane is substantially parallel to an “anatomic” transverse plane.
    Type: Application
    Filed: September 9, 2011
    Publication date: August 29, 2013
    Applicant: ZIMMER GMBH
    Inventors: Cosimo Donno, Adam D. Henderson