Patents by Inventor Adam Godzik

Adam Godzik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160232293
    Abstract: Disclosed are methods based on correlation of drug effects with genetic alterations in specific sub-regions of proteins. The presence of such genetic alterations in subjects with a relevant disease allows more directed treatment of the disease, ideally limited to subjects having a genetic alteration in the drug effect-correlated sub-region of a protein. Disclosed are methods of identifying subjects, treating subjects, identifying specific drug effect-correlated protein sub-regions, and identifying drugs correlated with specific protein sub-regions, all based on the discovered correlation of drug effects with genetic alterations in specific sub-regions of proteins.
    Type: Application
    Filed: October 17, 2014
    Publication date: August 11, 2016
    Inventors: Adam Godzik, Eduardo Porta-Pardo
  • Publication number: 20130224182
    Abstract: The invention provides Bcl-G polypeptides and encoding nucleic acids. Bcl-G polypeptides include Bcl-GL and Bcl-GS. The invention also provides mouse Bcl-G. The invention also provides vectors containing Bcl-G nucleic acids, host cells containing such vectors, Bcl-G anti-sense nucleic acids and related compositions. The invention additionally provides Bcl-G oligonucleotides that can be used to hybridize to or amplify a Bcl-G nucleic acid. Anti-Bcl-G specific antibodies are also provided. Further provided are kits containing Bcl-G nucleic acids or Bcl-G specific antibodies. Such kits and reagents can be used to diagnose cancer, monitor response to therapy, or predict the prognosis of a cancer patient. The invention additionally provides methods of modulating apoptosis using Bcl-G polypeptides, encoding nucleic acids, or compounds that modulate the activity or expression of Bcl-G polypeptides. The methods for modulating apoptosis can be used to treat diseases such as cancer.
    Type: Application
    Filed: September 28, 2011
    Publication date: August 29, 2013
    Applicant: Sanford-Burnham Medical Research Institute
    Inventors: John C. Reed, Adam Godzik
  • Patent number: 8119410
    Abstract: A novel human member of the Bcl-2 family Bcl-B has been identified, which is closest in amino-acid sequence homology to the Boo (Diva) protein. The Bcl-B protein is widely expressed in adult human tissues. The Bcl-B protein modulates apoptosis. Bcl-B also binds Bcl-2, BCl-XL, and Bax but not Bak. Bcl-B displays a unique pattern of selectivity for binding and regulating the function of other members of the Bcl-2 family.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: February 21, 2012
    Assignee: Sanford-Burnham Medical Research Institute
    Inventors: John C. Reed, Ning Ke, Adam Godzik
  • Patent number: 8037094
    Abstract: A hybrid annotation and publication system can access content in a scalable manner from databases, allowing for its editing and publication via wiki-style programs, while at the same time allowing for peer-review of such content via peer-review programs. This system balances the wiki-style programs, the peer-review programs, and any database store accesses in a manner appropriate to the need at hand according to various heuristics. For instance, the system can be accessed via a web browser, and data provided from various databases can be edited. Such data can be stored in the system in a hierarchical manner. Once the content is annotated, it can be reviewed (at various levels, ranging from expert to novice). Upon review, such content can be published using the wiki programs, so that the content is ready for public and/or private consumption.
    Type: Grant
    Filed: August 14, 2007
    Date of Patent: October 11, 2011
    Assignee: The Burnham Institute
    Inventors: Adam Godzik, Sri Krishna Subramanian, Dana Grace Weekes
  • Patent number: 8034901
    Abstract: The invention provides Bcl-G polypeptides and encoding nucleic acids. Bcl-G polypeptides include Bcl-GL and Bcl-GS. The invention also provides mouse Bcl-G. The invention also provides vectors containing Bcl-G nucleic acids, host cells containing such vectors, Bcl-G anti-sense nucleic acids and related compositions. The invention additionally provides Bcl-G oligonucleotides that can be used to hybridize to or amplify a Bcl-G nucleic acid. Anti-Bcl-G specific antibodies are also provided. Further provided are kits containing Bcl-G nucleic acids or Bcl-G specific antibodies. Such kits and reagents can be used to diagnose cancer, monitor response to therapy, or predict the prognosis of a cancer patient. The invention additionally provides methods of modulating apoptosis using Bcl-G polypeptides, encoding nucleic acids, or compounds that modulate the activity or expression of Bcl-G polypeptides. The methods for modulating apoptosis can be used to treat diseases such as cancer.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: October 11, 2011
    Assignee: Sanford-Burnham Medical Research Institute
    Inventors: John C. Reed, Adam Godzik
  • Publication number: 20110201780
    Abstract: In accordance with the present invention, there are provided novel Death Domain (DD), Death Effector Domain (DED) and NB-ARC domain proteins. The invention also provides nucleic acid molecules encoding DD, DED and NB-ARC domain proteins, vectors containing these nucleic acid molecules and host cells containing the vectors. The invention also provides antibodies that can specifically bind to invention DDs, DEDs or NB-ARC domains. Such DDs, DEDs and NB-ARC domains and/or anti-DD, anti-DED or anti-NB-ARC domain antibodies are useful for discovery of drugs that suppress infection, autoimmunity, inflammation, allergy, allograft rejection, sepsis, and other diseases.
    Type: Application
    Filed: March 17, 2011
    Publication date: August 18, 2011
    Applicant: SANFORD-BURNHAM MEDICAL RESEARCH INSTITUTE
    Inventors: John C. Reed, Adam Godzik, Krzysztof Pawlowski, Loredana Fiorentino, Sug Hyung Lee, Wilfried Roth, Frank Stenner-Liewen
  • Publication number: 20110190168
    Abstract: A novel human member of the Bcl-2 family Bcl-B has been identified, which is Closest in amino-acid sequence homology to the Boo (Diva) protein. The Bcl-B protein is Widely expressed in adult human tissues. The Bcl-B protein modulates apoptosis. Bcl-B also binds Bcl-2, BCl-XL, and Bax but not Bak. Bcl-B displays a unique pattern of selectivity for binding and regulating the function of other members of the Bcl-2 family.
    Type: Application
    Filed: November 15, 2010
    Publication date: August 4, 2011
    Applicant: Sanford-Burnham Medical Research Institute
    Inventors: John C. Reed, Ning Ke, Adam Godzik
  • Publication number: 20110189711
    Abstract: The invention provides isolated nucleic acid molecules encoding PAAD-domain containing polypeptides and functional fragments thereof, including fragments containing PAAD domains, NACHT domains and ARED domains, encoded polypeptides, and antibodies. Also provided are methods of identifying polypeptides and agents that associate with a PAAD-domain containing polypeptide or fragment thereof, or that alter an association of a PAAD domain-containing polypeptides. Further provided are methods of identifying agents that modulate PAAD domain-mediated inhibition of NF?B activity, or modulate an activity of a NACHT domain of a PAAD domain-containing polypeptide. Also provided are methods of modulating NF?B transcriptional activity in a cell, and methods of altering expression of a PAAD domain-containing polypeptide in a cell.
    Type: Application
    Filed: November 9, 2010
    Publication date: August 4, 2011
    Applicant: Sanford-Burnham Medical Research Institute
    Inventors: John C. Reed, Adam Godzik
  • Publication number: 20110071213
    Abstract: The invention provides caspase recruitment domain (CARD)-containing polypeptides and functional fragments thereof, encoding nucleic acid molecules, and specific antibodies. Also provided are screening methods for identifying CARD-associated polypeptides (CAPs), and for identifying agents that alter the association of a CARD-containing polypeptide with itself or with a CAP. Further provided are methods of altering a biochemical process modulated by a CARD-containing polypeptide, and methods of diagnosing a pathology characterized by an increased or decreased level of a CARD-containing polypeptide.
    Type: Application
    Filed: November 1, 2010
    Publication date: March 24, 2011
    Applicant: SANFORD-BURNHAM MEDICAL RESEARCH INSTITUTE
    Inventors: Krzysztof Pawlowski, John C. Reed, Adam Godzik
  • Publication number: 20110027260
    Abstract: The invention provides Bcl-G polypeptides and encoding nucleic acids. Bcl-G polypeptides include Bcl-GL and Bcl-GS. The invention also provides mouse Bcl-G. The invention also provides vectors containing Bcl-G nucleic acids, host cells containing such vectors, Bcl-G anti-sense nucleic acids and related compositions. The invention additionally provides Bcl-G oligonucleotides that can be used to hybridize to or amplify a Bcl-G nucleic acid. Anti-Bcl-G specific antibodies are also provided. Further provided are kits containing Bcl-G nucleic acids or Bcl-G specific antibodies. Such kits and reagents can be used to diagnose cancer, monitor response to therapy, or predict the prognosis of a cancer patient. The invention additionally provides methods of modulating apoptosis using Bcl-G polypeptides, encoding nucleic acids, or compounds that modulate the activity or expression of Bcl-G polypeptides. The methods for modulating apoptosis can be used to treat diseases such as cancer.
    Type: Application
    Filed: December 23, 2009
    Publication date: February 3, 2011
    Applicant: Burnham Institute for Medical Research
    Inventors: John C. Reed, Adam Godzik
  • Publication number: 20110008319
    Abstract: The invention provides caspase recruitment domain (CARD)-containing polypeptides, CARD, NB-ARC, ANGIO-R, LRR and SAM domains therefrom, as well as encoding nucleic acid molecules and specific antibodies. The invention also provides related screening, diagnostic and therapeutic methods.
    Type: Application
    Filed: November 30, 2009
    Publication date: January 13, 2011
    Applicant: Burnham Institute for Medical Research
    Inventors: John C. Reed, Frederick F. Pio, Adam Godzik, Christian Stehlik, Jason S. Damiano, Sug Hyung Lee, Vasco A. Oliveira, Hideki Hayashi, Kryzysztof Pawlowski
  • Patent number: 7846681
    Abstract: A novel human member of the Bcl-2 family Bcl-B has been identified, which is closest in amino-acid sequence homology to the Boo (Diva) protein. The Bcl-B protein is widely expressed in adult human tissues. The Bcl-B protein modulates apoptosis. Bcl-B also binds Bcl-2. BCl-XL, and Bax but not Bak. Bcl-B displays a unique pattern of selectivity for binding and regulating the function of other members of the Bcl-2 family. Accordingly, provided herein is a method for identifying a molecule that binds to the Bcl-B polypeptide, by contacting the Bcl-B polypeptide with a test molecule and determining whether the test molecule binds to the polypeptide.
    Type: Grant
    Filed: April 20, 2009
    Date of Patent: December 7, 2010
    Assignee: Sanford-Burnham Medical Research Institute
    Inventors: John C. Reed, Ning Ke, Adam Godzik
  • Patent number: 7833750
    Abstract: The invention provides caspase recruitment domain (CARD)-containing polypeptides and functional fragments thereof, encoding nucleic acid molecules, and specific antibodies. Also provided are screening methods for identifying CARD-associated polypeptides (CAPs), and for identifying agents that alter the association of a CARD-containing polypeptide with itself or with a CAP. Further provided are methods of altering a biochemical process modulated by a CARD-containing polypeptide, and methods of diagnosing a pathology characterized by an increased or decreased level of a CARD-containing polypeptide.
    Type: Grant
    Filed: October 8, 2004
    Date of Patent: November 16, 2010
    Assignee: Sanford-Burnham Medical Research Institute
    Inventors: Krzysztof Pawlowski, John C. Reed, Adam Godzik
  • Patent number: 7834149
    Abstract: The invention provides caspase recruitment domain (CARD)-containing polypeptides and functional fragments thereof, encoding nucleic acid molecules, and specific antibodies. Also provided are screening methods for identifying CARD-associated polypeptides (CAPs), and for identifying agents that alter the association of a CARD-containing polypeptide with itself or with a CAP. Further provided are methods of altering a biochemical process modulated by a CARD-containing polypeptide, and methods of diagnosing a pathology characterized by an increased or decreased level of a CARD-containing polypeptide.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: November 16, 2010
    Assignee: Sanford-Burnham Medical Research Institute
    Inventors: Krzysztof Pawlowski, John C. Reed, Adam Godzik
  • Patent number: 7750134
    Abstract: The invention provides isolated SUMO-specific protease-like (or “SSP”) domain-containing polypeptides from microorganisms, including bacteria, protozoans and yeast, including Escherichia, Salmonella, Pseudomonas, Chlamydia, Plasmodium, Trypanosma, Mesorhizobium, Rickettsia, Cryptosporidium and Candida species. The invention further provides modifications of such polypeptides, functional fragments therefrom, encoding nucleic acid molecules and specific antibodies. Also provided are methods for identifying polypeptides and compounds that associate with or modulate the activity of the SSP domain-containing polypeptides. Further provided are methods of modulating a biological activity in a cell, and treating pathological conditions, using the described nucleic acid molecules, polypeptides and compounds.
    Type: Grant
    Filed: November 20, 2002
    Date of Patent: July 6, 2010
    Assignee: Sanford-Burnham Medical Research Institute
    Inventors: Adam Godzik, John C. Reed
  • Patent number: 7671183
    Abstract: The invention provides isolated nucleic acid molecules encoding PAAD-domain containing polypeptides and functional fragments thereof, including fragments containing PAAD domains, NACHT domains and ARED domains, encoded polypeptides, and antibodies. Also provided are methods of identifying polypeptides and agents that associate with a PAAD-domain containing polypeptide or fragment thereof, or that alter an association of a PAAD domain-containing polypeptides. Further provided are methods of identifying agents that modulate PAAD domain-mediated inhibition of NFKB activity, or modulate an activity of a NACHT domain of a PAAD domain-containing polypeptide. Also provided are methods of modulating NFKB transcriptional activity in a cell, and methods of altering expression of a PAAD domain-containing polypeptide in a cell.
    Type: Grant
    Filed: July 27, 2006
    Date of Patent: March 2, 2010
    Assignee: Burnham Institute for Medical Research
    Inventors: John C. Reed, Adam Godzik
  • Patent number: 7638324
    Abstract: The invention provides Bcl-G polypeptides and encoding nucleic acids. Bcl-G polypeptides include Bcl-GL and Bcl-GS. The invention also provides mouse Bcl-G. The invention also provides vectors containing Bcl-G nucleic acids, host cells containing such vectors, Bcl-G anti-sense nucleic acids and related compositions. The invention additionally provides Bcl-G oligonucleotides that can be used to hybridize to or amplify a Bcl-G nucleic acid. Anti-Bcl-G specific antibodies are also provided. Further provided are kits containing Bcl-G nucleic acids or Bcl-G specific antibodies. Such kits and reagents can be used to diagnose cancer, monitor response to therapy, or predict the prognosis of a cancer patient. The invention additionally provides methods of modulating apoptosis using Bcl-G polypeptides, encoding nucleic acids, or compounds that modulate the activity or expression of Bcl-G polypeptides. The methods for modulating apoptosis can be used to treat diseases such as cancer.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: December 29, 2009
    Assignee: Burnham Institute for Medical Research
    Inventors: John C. Reed, Adam Godzik, Bin Guo
  • Publication number: 20090305904
    Abstract: A novel human member of the Bcl-2 family Bcl-B has been identified, which is closest in amino-acid sequence homology to the Boo (Diva) protein. The Bcl-B protein is widely expressed in adult human tissues. The Bcl-B protein modulates apoptosis. Bcl-B also binds Bcl-2. BCl-XL, and Bax but not Bak. Bcl-B displays a unique pattern of selectivity for binding and regulating the function of other members of the Bcl-2 family.
    Type: Application
    Filed: April 20, 2009
    Publication date: December 10, 2009
    Inventors: John C. Reed, Ning Ke, Adam Godzik
  • Patent number: 7626001
    Abstract: The invention provides caspase recruitment domain (CARD)-containing polypeptides, CARD, NB-ARC, ANGIO-R, LRR and SAM domains therefrom, as well as encoding nucleic acid molecules and specific antibodies. The invention also provides related screening, diagnostic and therapeutic methods.
    Type: Grant
    Filed: March 26, 2007
    Date of Patent: December 1, 2009
    Assignee: Burnham Institute for Medical Research
    Inventors: John C. Reed, Frederick F. Pio, Adam Godzik, Christian Stehlik, Jason S. Damiano, Sug Hyung Lee, Vasco A. Oliveira, Hideki Hayashi, Kryzysztof Pawlowski
  • Patent number: 7588914
    Abstract: The invention provides isolated Bcl-2 domain-containing polypeptides from Mycobacterial species, including M. tuberculosis, M. avium, M. bovis, M. leprae and M. smegmatis, and from Streptomyces species, including S. coelicolor, as well as modifications of such polypeptides, functional fragments therefrom, encoding nucleic acid molecules and specific antibodies. Also provided are methods for identifying polypeptides and compounds that associate with or modulate the activity of the Bcl-2 domain-containing polypeptides. Further provided are methods of modulating apoptosis and treating pathological conditions using the described nucleic acid molecules, polypeptides and compounds.
    Type: Grant
    Filed: November 13, 2002
    Date of Patent: September 15, 2009
    Assignee: Burnham Institute for Medical Research
    Inventors: Adam Godzik, John C. Reed