Patents by Inventor Adam Herrmann

Adam Herrmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220266338
    Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe-Co alloy material (e.g., the Fe-Co-V alloy Hiperco-50(R)). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.
    Type: Application
    Filed: May 9, 2022
    Publication date: August 25, 2022
    Applicant: California Institute of Technology
    Inventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
  • Patent number: 11351613
    Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe—Co alloy material (e.g., the Fe—Co—V alloy Hiperco-50®). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: June 7, 2022
    Assignee: California Institute of Technology
    Inventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
  • Publication number: 20190366435
    Abstract: Elements formed from magnetic materials and their methods of manufacture are presented. Magnetic materials include a magnetic alloy material, such as, for example, an Fe—Co alloy material (e.g., the Fe—Co—V alloy Hiperco-50®). The magnetic alloy materials may comprise a powdered material suitable for use in additive manufacturing techniques, such as, for example direct energy deposition or laser powder bed fusion. Manufacturing techniques include the use of variable deposition time and energy to control the magnetic and structural properties of the materials by altering the microstructure and residual stresses within the material. Manufacturing techniques also include post deposition processing, such as, for example, machining and heat treating. Heat treating may include a multi-step process during which the material is heated, held and then cooled in a series of controlled steps such that a specific history of stored internal energy is created within the material.
    Type: Application
    Filed: June 3, 2019
    Publication date: December 5, 2019
    Applicant: California Institute of Technology
    Inventors: Samad A. Firdosy, Robert P. Dillon, Ryan W. Conversano, John Paul C. Borgonia, Andrew A. Shapiro-Scharlotta, Bryan W. McEnerney, Adam Herrmann
  • Patent number: 5816322
    Abstract: A quench cooler or transferline heat exchanger for quenching the effluent from a thermal cracking furnace has an inlet connector between the cracking furnace tubes and the tubes of the quench cooler. The tubes of the quench cooler are arranged in a circular pattern of spaced tubes. The flow passage of the connector is configured to initially decelerate and then re-accelerate the gas. This involves a conical diverging diffuser followed by a radial diffuser and then an annular converging section. The cross sectional transitions are smooth to avoid dead spaces and minimize pressure loss.
    Type: Grant
    Filed: April 18, 1997
    Date of Patent: October 6, 1998
    Assignees: ABB Lummus Global Inc., SHG - Schack GmbH
    Inventors: John Vincent Albano, Kandasamy Meenakshi Sundaram, Hellmut Adam Herrmann