Patents by Inventor Adam J. Fischbach

Adam J. Fischbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12142459
    Abstract: Exemplary processing methods may include forming a plasma of a silicon-containing precursor. The methods may include depositing a flowable film on a semiconductor substrate with plasma effluents of the silicon-containing precursor. The semiconductor substrate may be housed in a processing region of a semiconductor processing chamber. The processing region may be defined between a faceplate and a substrate support on which the semiconductor substrate is seated. The methods may include forming a treatment plasma within the processing region of the semiconductor processing chamber. The treatment plasma may be formed at a first power level from a first power source. A second power may be applied to the substrate support from a second power source at a second power level. The methods may include densifying the flowable film within the feature defined within the semiconductor substrate with plasma effluents of the treatment plasma.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: November 12, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Khokan Chandra Paul, Adam J. Fischbach, Tsutomu Tanaka, Canfeng Lai
  • Publication number: 20230343552
    Abstract: Exemplary semiconductor substrate supports may include a pedestal shaft. The semiconductor substrate supports may include a platen. The platen may define a fluid channel across a first surface of the platen. The semiconductor substrate supports may include a platen insulator positioned between the platen and the pedestal shaft. The semiconductor substrate supports may include a conductive puck coupled with the first surface of the platen and configured to contact a substrate supported on the semiconductor substrate support. The semiconductor substrate supports may include a conductive shield extending along a backside of the platen insulator and coupled between a portion of the platen insulator and the pedestal shaft.
    Type: Application
    Filed: June 28, 2023
    Publication date: October 26, 2023
    Applicant: Applied Materials, Inc.
    Inventors: Khokan Chandra Paul, Ravikumar Patil, Vijet Patil, Carlaton Wong, Adam J. Fischbach, Timothy Franklin, Tsutomu Tanaka, Canfeng Lai
  • Patent number: 11699571
    Abstract: Exemplary semiconductor substrate supports may include a pedestal shaft. The semiconductor substrate supports may include a platen. The platen may define a fluid channel across a first surface of the platen. The semiconductor substrate supports may include a platen insulator positioned between the platen and the pedestal shaft. The semiconductor substrate supports may include a conductive puck coupled with the first surface of the platen and configured to contact a substrate supported on the semiconductor substrate support. The semiconductor substrate supports may include a conductive shield extending along a backside of the platen insulator and coupled between a portion of the platen insulator and the pedestal shaft.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: July 11, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Khokan Chandra Paul, Ravikumar Patil, Vijet Patil, Carlaton Wong, Adam J. Fischbach, Timothy Franklin, Tsutomu Tanaka, Canfeng Lai
  • Publication number: 20220130713
    Abstract: Exemplary processing systems may include a chamber body. The systems may include a pedestal configured to support a semiconductor substrate. The systems may include a faceplate. The chamber body, the pedestal, and the faceplate may define a processing region. The faceplate may be coupled with an RF power source. The systems may include a remote plasma unit. The remote plasma unit may be coupled at electrical ground. The systems may include a discharge tube extending from the remote plasma unit towards the faceplate. The discharge tube may define a central aperture. The discharge tube may be electrically coupled with each of the faceplate and the remote plasma unit. The discharge tube may include ferrite extending about the central aperture of the discharge tube.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 28, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Khokan Chandra Paul, Tsutomu Tanaka, Adam J. Fischbach, Abhijit A. Kangude, Juan Carlos Rocha-Alvarez
  • Publication number: 20220076920
    Abstract: Exemplary semiconductor substrate supports may include a pedestal shaft. The semiconductor substrate supports may include a platen. The platen may define a fluid channel across a first surface of the platen. The semiconductor substrate supports may include a platen insulator positioned between the platen and the pedestal shaft. The semiconductor substrate supports may include a conductive puck coupled with the first surface of the platen and configured to contact a substrate supported on the semiconductor substrate support. The semiconductor substrate supports may include a conductive shield extending along a backside of the platen insulator and coupled between a portion of the platen insulator and the pedestal shaft.
    Type: Application
    Filed: September 8, 2020
    Publication date: March 10, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Khokan Chandra Paul, Ravikumar Patil, Vijet Patil, Carlaton Wong, Adam J. Fischbach, Timothy Franklin, Tsutomu Tanaka, Canfeng Lai
  • Publication number: 20220076922
    Abstract: Exemplary processing methods may include forming a plasma of a silicon-containing precursor. The methods may include depositing a flowable film on a semiconductor substrate with plasma effluents of the silicon-containing precursor. The semiconductor substrate may be housed in a processing region of a semiconductor processing chamber. The processing region may be defined between a faceplate and a substrate support on which the semiconductor substrate is seated. The methods may include forming a treatment plasma within the processing region of the semiconductor processing chamber. The treatment plasma may be formed at a first power level from a first power source. A second power may be applied to the substrate support from a second power source at a second power level. The methods may include densifying the flowable film within the feature defined within the semiconductor substrate with plasma effluents of the treatment plasma.
    Type: Application
    Filed: September 8, 2020
    Publication date: March 10, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Khokan Chandra Paul, Adam J. Fischbach, Tsutomu Tanaka, Canfeng Lai