Patents by Inventor Adam J. Marcinuk

Adam J. Marcinuk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11747613
    Abstract: A multi-axis rotary actuator includes a payload support configured to be rotatable about a first axis, a disk surrounding at least a portion of the payload support, and an elevation wheel rotatably coupled to the payload support. The disk is configured to be rotatable about the first axis. The elevation wheel is configured to be in contact with the disk and to be rotatable about a second axis perpendicular to the first axis. The actuator can include a mirror or other device coupled to the elevation wheel. The mirror or other device is configured to be rotatable about the first axis and the second axis as the payload support and the elevation wheel rotate about the first axis and the second axis, respectively.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: September 5, 2023
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Michael E. Knotts, Adam J. Marcinuk, Chris L. Willis
  • Publication number: 20220137401
    Abstract: A multi-axis rotary actuator includes a payload support configured to be rotatable about a first axis, a disk surrounding at least a portion of the payload support, and an elevation wheel rotatably coupled to the payload support. The disk is configured to be rotatable about the first axis. The elevation wheel is configured to be in contact with the disk and to be rotatable about a second axis perpendicular to the first axis. The actuator can include a mirror or other device coupled to the elevation wheel. The mirror or other device is configured to be rotatable about the first axis and the second axis as the payload support and the elevation wheel rotate about the first axis and the second axis, respectively.
    Type: Application
    Filed: November 5, 2020
    Publication date: May 5, 2022
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Michael E. Knotts, Adam J. Marcinuk, Chris L. Willis
  • Patent number: 10535495
    Abstract: A system and method for imaging a sample having a complex structure (such as an integrated circuit). The sample is placed on a motion system that moves the sample with respect to an electron beam generator that is used in imaging the sample. The motion system affords thirteen degrees-of-freedom for movement of the sample, by providing a rotation stage, a fine 6-axis piezoelectric-driven stage, and a coarse 6-axis hexapod stage. Various detectors gather information to image the sample. Interferometric and/or capacitive sensors are used to measure the position of the sample and motion system.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: January 14, 2020
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Chris L. Willis, Eugene M. Lavely, Adam J. Marcinuk, Paul R. Moffitt, Jonathan R. Takahashi
  • Patent number: 10468230
    Abstract: A system and method for imaging a sample having a complex structure (such as an integrated circuit) implements two modes of operation utilizing a common electron beam generator that produces an electron beam within a chamber. In the first mode, the electron beam interacts directly with the sample, and backscattered electrons, secondary electrons, and backward propagating fluorescent X-rays are measured. In the second mode, the electron beam interrogates the sample via X-rays generated by the electron beam within a target that is positioned between the electron beam generator and the sample. Transmitted X-rays are measured by a detector within the vacuum chamber. The sample is placed on a movable platform to precisely position the sample with respect to the electron beam. Interferometric and/or capacitive sensors are used to measure the position of the sample and movable platform to provide high accuracy metadata for performing high resolution three-dimensional sample reconstruction.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: November 5, 2019
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Eugene M. Lavely, Adam J. Marcinuk, Amrita V. Masurkar, Paul R. Moffitt, Michael S. Richman, Jonathan R. Takahashi, Jonathan K. Tong, Chris L. Willis
  • Publication number: 20190311881
    Abstract: A system and method for imaging a sample having a complex structure (such as an integrated circuit) implements two modes of operation utilizing a common electron beam generator that produces an electron beam within a chamber. In the first mode, the electron beam interacts directly with the sample, and backscattered electrons, secondary electrons, and backward propagating fluorescent X-rays are measured. In the second mode, the electron beam interrogates the sample via X-rays generated by the electron beam within a target that is positioned between the electron beam generator and the sample. Transmitted X-rays are measured by a detector within the vacuum chamber. The sample is placed on a movable platform to precisely position the sample with respect to the electron beam. Interferometric and/or capacitive sensors are used to measure the position of the sample and movable platform to provide high accuracy metadata for performing high resolution three-dimensional sample reconstruction.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 10, 2019
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Eugene M. Lavely, Adam J. Marcinuk, Amrita V. Masurkar, Paul R. Moffitt, Michael S. Richman, Jonathan R. Takahashi, Jonathan K. Tong, Chris L. Willis
  • Publication number: 20190311877
    Abstract: A system and method for imaging a sample having a complex structure (such as an integrated circuit). The sample is placed on a motion system that moves the sample with respect to an electron beam generator that is used in imaging the sample. The motion system affords thirteen degrees-of-freedom for movement of the sample, by providing a rotation stage, a fine 6-axis piezoelectric-driven stage, and a coarse 6-axis hexapod stage. Various detectors gather information to image the sample. Interferometric and/or capacitive sensors are used to measure the position of the sample and motion system.
    Type: Application
    Filed: April 10, 2018
    Publication date: October 10, 2019
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Chris L. Willis, Eugene M. Lavely, Adam J. Marcinuk, Paul R. Moffitt, Jonathan R. Takahashi
  • Patent number: 10371873
    Abstract: A high efficiency optical beam dump having at least two glass plates configured to define an optical path configured to reflect a beam incident the optical path from plate to plate, wherein the plates include anti-reflective coatings and high reflective coatings and wherein the high-efficiency optical beam dump is capable of very high levels of attenuation through repetitive absorption and reflection of an optical beam.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: August 6, 2019
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Philip R Staver, Adam J Marcinuk
  • Publication number: 20180156947
    Abstract: An optical beam trap having at least two plates with anti-reflective coatings on an interior surface capable of very high levels of attenuation through repetitive absorption and reflection of an optical beam.
    Type: Application
    Filed: December 7, 2016
    Publication date: June 7, 2018
    Inventors: Philip R Staver, Adam J Marcinuk
  • Patent number: 9684146
    Abstract: A temperature insensitive locking apparatus for use with large optical mounts having at least one locking nut having an internal threaded portion adjacent to an internal tapered portion, at least one flexurized spring collet attached to a rigid base structure having an external threaded portion and a plurality of tapered flexures, a pivot shaft engaged with an optical yoke on a rotational axis of symmetry wherein when the internal threads of the locking nut engage with the external threads of the flexurized spring collet an increased level of a radial clamping force is provided around the pivot shaft.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: June 20, 2017
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Adam J. Marcinuk, Michael J. Shaw, David E. Thompson
  • Publication number: 20160004027
    Abstract: An athermal locking mechanism apparatus for large optic mounts is disclosed. The apparatus comprises at least one locking nut, at least one flexurized spring collet attached to a rigid base structure, a pivot shaft engaged with an optical yolk on a rotational axis of symmetry and a plurality of threads that joins the locking nuts with the flexurized spring collet The threads provide an increased level of a radial clamping force onto the pivot shaft. The interference generated between the locking nut and the spring collet causes all flexures to squeeze down onto the shaft, applying a purely symmetric radial force during the locking process. This eliminates any induced rotational torque and prevents the optical element from moving during the locking process after being properly aligned.
    Type: Application
    Filed: September 19, 2014
    Publication date: January 7, 2016
    Inventors: Adam J. MARCINUK, Michael J. SHAW, David E. THOMPSON
  • Patent number: 8971359
    Abstract: Techniques and architecture are disclosed for controlling the temperature of a fiber laser system. In some embodiments, a single thermoelectric cooler (TEC) may be utilized to control the temperature of multiple system components. In some embodiments, a TEC may be physically/thermally coupled to a laser diode, which in turn may be physically/thermally coupled with a mounting plate to which one or more fiber grating holders are physically/thermally coupled, and an optical fiber that is operatively coupled with the laser diode may be physically/thermally coupled with the one or more fiber grating holders. In some embodiments, this may provide a thermal pathway/coupling between the optical fiber (e.g., its fiber grating(s)), and the TEC. In some embodiments, this may reduce/minimize the quantity of temperature control components, reduce system size/complexity, increase system dependability, and/or increase system performance/efficiency.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: March 3, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Daniel J. Creeden, Adam J. Marcinuk, Chris L. Willis
  • Publication number: 20130136146
    Abstract: Techniques and architecture are disclosed for controlling the temperature of a fiber laser system. In some embodiments, a single thermoelectric cooler (TEC) may be utilized to control the temperature of multiple system components. In some embodiments, a TEC may be physically/thermally coupled to a laser diode, which in turn may be physically/thermally coupled with a mounting plate to which one or more fiber grating holders are physically/thermally coupled, and an optical fiber that is operatively coupled with the laser diode may be physically/thermally coupled with the one or more fiber grating holders. In some embodiments, this may provide a thermal pathway/coupling between the optical fiber (e.g., its fiber grating(s)), and the TEC. In some embodiments, this may reduce/minimize the quantity of temperature control components, reduce system size/complexity, increase system dependability, and/or increase system performance/efficiency.
    Type: Application
    Filed: April 12, 2012
    Publication date: May 30, 2013
    Applicant: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: Daniel J. Creeden, Adam J. Marcinuk, Chris L. Willis