Patents by Inventor Adam Kajdos

Adam Kajdos has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11837712
    Abstract: In an embodiment, a Li-ion battery cell comprises an anode electrode with an electrode coating that (1) comprises Si-comprising active material particles, (2) exhibits an areal capacity loading in the range of about 3 mAh/cm2 to about 12 mAh/cm2, (3) exhibits a volumetric capacity in the range from about 600 mAh/cc to about 1800 mAh/cc in a charged state of the cell, (4) comprises conductive additive material particles, and (5) comprises a polymer binder that is configured to bind the Si-comprising active material particles and the conductive additive material particles together to stabilize the anode electrode against volume expansion during the one or more charge-discharge cycles of the battery cell while maintaining the electrical connection between the metal current collector and the Si-comprising active material particles.
    Type: Grant
    Filed: January 13, 2023
    Date of Patent: December 5, 2023
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Laura Gerber, Adam Kajdos, Justin Yen, Justin Doane, Jens Steiger
  • Patent number: 11791455
    Abstract: In an aspect, a lithium-ion battery anode composition comprises a porous composite particle comprising carbon (C) and an active material comprising silicon (Si), wherein the carbon is characterized by a domain size (r), as estimated from an atomic pair distribution function G(r) obtained from a synchrotron x-ray diffraction measurement of the porous composite particle, ranging from around 10 ? (1 nm) to around 60 ? (6 nm). In a further aspect, a carbon material for use in making an anode composition for use in a Li-ion battery is characterized by a domain size (r), as estimated from an atomic pair distribution function G(r) obtained from a synchrotron x-ray diffraction measurement of the carbon material, ranging from around 10 ? (1 nm) to around 60 ? (6 nm).
    Type: Grant
    Filed: January 12, 2023
    Date of Patent: October 17, 2023
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Matthew Clark, Adam Kajdos, Timothy Milakovich, Saujan Sivaram, Valentin Lulevich
  • Publication number: 20230282830
    Abstract: An embodiment is directed to an electrode composition for use in an energy storage device cell. The electrode comprises composite particles, each comprising carbon that is biomass-derived and active material. The active material exhibits partial vapor pressure below around 10-13 torr at around 400 K, and an areal capacity loading of the electrode composition ranges from around 2 mAh/cm2 to around 16 mAh/cm2.
    Type: Application
    Filed: May 9, 2023
    Publication date: September 7, 2023
    Inventors: Gleb YUSHIN, Adam KAJDOS
  • Patent number: 11688855
    Abstract: An embodiment is directed to an electrode composition for use in an energy storage device cell. The electrode comprises composite particles, each comprising carbon that is biomass-derived and active material. The active material exhibits partial vapor pressure below around 10?13 torr at around 400 K, and an areal capacity loading of the electrode composition ranges from around 2 mAh/cm2 to around 16 mAh/cm2.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: June 27, 2023
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Adam Kajdos
  • Publication number: 20230178711
    Abstract: In an embodiment, a Li-ion battery cell comprises an anode electrode with an electrode coating that (1) comprises Si-comprising active material particles, (2) exhibits an areal capacity loading in the range of about 3 mAh/cm2 to about 12 mAh/cm2, (3) exhibits a volumetric capacity in the range from about 600 mAh/cc to about 1800 mAh/cc in a charged state of the cell, (4) comprises conductive additive material particles, and (5) comprises a polymer binder that is configured to bind the Si-comprising active material particles and the conductive additive material particles together to stabilize the anode electrode against volume expansion during the one or more charge-discharge cycles of the battery cell while maintaining the electrical connection between the metal current collector and the Si-comprising active material particles.
    Type: Application
    Filed: January 13, 2023
    Publication date: June 8, 2023
    Inventors: Gleb YUSHIN, Laura GERBER, Adam KAJDOS, Justin YEN, Justin DOANE, Jens STEIGER
  • Publication number: 20230170466
    Abstract: In an aspect, a lithium-ion battery anode composition comprises a porous composite particle comprising carbon (C) and an active material comprising silicon (Si), wherein the carbon is characterized by a domain size (r), as estimated from an atomic pair distribution function G(r) obtained from a synchrotron x-ray diffraction measurement of the porous composite particle, ranging from around 10 ? (1 nm) to around 60 ? (6 nm). In a further aspect, a carbon material for use in making an anode composition for use in a Li-ion battery is characterized by a domain size (r), as estimated from an atomic pair distribution function G(r) obtained from a synchrotron x-ray diffraction measurement of the carbon material, ranging from around 10 ? (1 nm) to around 60 ? (6 nm).
    Type: Application
    Filed: January 12, 2023
    Publication date: June 1, 2023
    Inventors: Gleb YUSHIN, Matthew CLARK, Adam KAJDOS, Timothy MILAKOVICH, Saujan SIVARAM, Valentin LULEVICH
  • Publication number: 20230126762
    Abstract: A Li or Li-ion or Na or Na-ion battery cell is provided that comprises anode and cathode electrodes, a separator, and a solid electrolyte. The separator electrically separates the anode and the cathode. The solid electrolyte ionically couples the anode and the cathode. The solid electrolyte also comprises a melt-infiltration solid electrolyte composition that is disposed at least partially in at least one of the electrodes or in the separator.
    Type: Application
    Filed: December 21, 2022
    Publication date: April 27, 2023
    Inventors: Gleb YUSHIN, Adam KAJDOS, Eugene BERDICHEVSKY, Bogdan ZDYRKO
  • Publication number: 20230079476
    Abstract: In an aspect, a lithium-ion battery anode composition comprises a porous composite particle comprising carbon (C) and an active material comprising silicon (Si), wherein the carbon is characterized by a domain size (r), as estimated from an atomic pair distribution function G(r) obtained from a synchrotron x-ray diffraction measurement of the porous composite particle, ranging from around 10 ? (1 nm) to around 60 ? (6 nm). In a further aspect, a carbon material for use in making an anode composition for use in a Li-ion battery is characterized by a domain size (r), as estimated from an atomic pair distribution function G(r) obtained from a synchrotron x-ray diffraction measurement of the carbon material, ranging from around 10 ? (1 nm) to around 60 ? (6 nm).
    Type: Application
    Filed: September 7, 2022
    Publication date: March 16, 2023
    Inventors: Gleb YUSHIN, Matthew CLARK, Adam KAJDOS, Timothy MILAKOVICH, Saujan SIVARAM, Valentin LULEVICH
  • Patent number: 11581523
    Abstract: In an embodiment, a Li-ion battery cell comprises an anode electrode with an electrode coating that (1) comprises Si-comprising active material particles, (2) exhibits an areal capacity loading in the range of about 3 mAh/cm2 to about 12 mAh/cm2, (3) exhibits a volumetric capacity in the range from about 600 mAh/cc to about 1800 mAh/cc in a charged state of the cell, (4) comprises conductive additive material particles, and (5) comprises a polymer binder that is configured to bind the Si-comprising active material particles and the conductive additive material particles together to stabilize the anode electrode against volume expansion during the one or more charge-discharge cycles of the battery cell while maintaining the electrical connection between the metal current collector and the Si-comprising active material particles.
    Type: Grant
    Filed: October 18, 2018
    Date of Patent: February 14, 2023
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Laura Gerber, Adam Kajdos, Justin Yen, Justin Doane, Jens Steiger
  • Publication number: 20230015653
    Abstract: An anode material composition is provided for a metal-ion battery that comprises an active material coating, a current conductive current collector, and a conductive interlayer coupling the active material coating to the current collector. The active material coating may have a capacity loading of at least 2 mAh/cm2 and comprise active material particles that exhibit volume expansion in the range of about 8 vol. % to about 160 vol. % during a first charge-discharge cycle and volume expansion in the range of about 4 vol. % to about 50 vol. % during one or more subsequent charge-discharge cycles.
    Type: Application
    Filed: September 27, 2022
    Publication date: January 19, 2023
    Inventors: Gleb Yushin, Adam Kajdos, Laura Gerber, Jens Steiger, Justin Yen, Justin Doane, Alexander Jacobs, Eerik Hantsoo, Eugene Berdichevsky
  • Patent number: 11545694
    Abstract: A Li or Li-ion or Na or Na-ion battery cell is provided that comprises anode and cathode electrodes, a separator, and a solid electrolyte. The separator electrically separates the anode and the cathode. The solid electrolyte ionically couples the anode and the cathode. The solid electrolyte also comprises a melt-infiltration solid electrolyte composition that is disposed at least partially in at least one of the electrodes or in the separator.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: January 3, 2023
    Assignee: Sila Nanotechnologies, Inc.
    Inventors: Gleb Yushin, Adam Kajdos, Eugene Berdichevsky, Bogdan Zdyrko
  • Publication number: 20220416256
    Abstract: In an embodiment, a Li-ion battery electrode comprises a conductive interlayer arranged between a current collector and an electrode active material layer. The conductive interlayer comprises first conductive additives and a first polymer binder, and the electrode active material layer comprises a plurality of active material particles mixed with a second polymer binder (which may be the same as or different from the first polymer binder) and second conductive additives (which may be the same as or different from the first conductive additives). In a further embodiment, the Li-ion battery electrode may be fabricated via application of successive slurry formulations onto the current collector, with the resultant product then being calendared (or densified).
    Type: Application
    Filed: August 29, 2022
    Publication date: December 29, 2022
    Inventors: Gleb YUSHIN, Justin YEN, Jens STEIGER, Eniko ZSOLDOS, Mareva FEVRE, Adam KAJDOS, Weimin WANG
  • Publication number: 20220302452
    Abstract: An embodiment is directed to an electrode composition for use in an energy storage device cell. The electrode comprises composite particles, each comprising carbon that is biomass-derived and active material. The active material exhibits partial vapor pressure below around 10?13 torr at around 400 K, and an areal capacity loading of the electrode composition ranges from around 2 mAh/cm2 to around 16 mAh/cm2.
    Type: Application
    Filed: June 8, 2022
    Publication date: September 22, 2022
    Inventors: Gleb YUSHIN, Adam KAJDOS
  • Patent number: 11380896
    Abstract: An embodiment is directed to an electrode composition for use in an energy storage device cell. The electrode comprises composite particles, each comprising carbon that is biomass-derived and active material. The active material exhibits partial vapor pressure below around 10?13 torr at around 400 K, and an areal capacity loading of the electrode composition ranges from around 2 mAh/cm2 to around 16 mAh/cm2.
    Type: Grant
    Filed: September 13, 2019
    Date of Patent: July 5, 2022
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Adam Kajdos
  • Publication number: 20220037645
    Abstract: A battery electrode composition is provided that comprises composite particles. Each of the composite particles in the composition (which may represent all or a portion of a larger composition) may comprise a porous electrode particle and a filler material. The porous electrode particle may comprise active material provided to store and release ions during battery operation. The filler material may occupy at least a portion of the pores of the electrode particle. The filler material may be liquid and not substantially conductive with respect to electron transport.
    Type: Application
    Filed: October 15, 2021
    Publication date: February 3, 2022
    Inventors: Gleb YUSHIN, Bogdan ZDYRKO, Eugene BERDICHEVSKY, Alexander JACOBS, Alper NESE, Adam KAJDOS, Justin YEN, Justin DOANE
  • Patent number: 11158848
    Abstract: A battery electrode composition is provided that comprises composite particles. Each of the composite particles in the composition (which may represent all or a portion of a larger composition) may comprise a porous electrode particle and a filler material. The porous electrode particle may comprise active material provided to store and release ions during battery operation. The filler material may occupy at least a portion of the pores of the electrode particle. The filler material may comprise a solid and is not substantially conductive with respect to electron transport.
    Type: Grant
    Filed: November 9, 2019
    Date of Patent: October 26, 2021
    Assignee: SILA NANOTECHNOLOGIES, INC.
    Inventors: Gleb Yushin, Bogdan Zdyrko, Eugene Berdichevsky, Alexander Jacobs, Alper Nese, Adam Kajdos, Justin Yen, Justin Doane
  • Publication number: 20210313617
    Abstract: An aspect is directed to a Li-ion battery, comprising anode and cathode electrode, an electrolyte ionically coupling the anode and the cathode electrodes, and a separator electrically separating the anode and the cathode electrodes, wherein the anode electrode comprises a mixture of conversion-type anode material and intercalation-type anode material, wherein the conversion-type anode material exhibits median specific reversible capacity in the range from about 1400 mAh/g to about 2200 mAh/g, and wherein the conversion-type anode material exhibits first cycle coulombic efficiency in the range from about 88% to about 96%.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 7, 2021
    Inventors: Gleb YUSHIN, Adam KAJDOS, Valentin LULEVICH, Nicholas INGLE, Kostiantyn TURCHENIUK
  • Publication number: 20200127327
    Abstract: A Li or Li-ion or Na or Na-ion battery cell is provided that comprises anode and cathode electrodes, a separator, and a solid electrolyte. The separator electrically separates the anode and the cathode. The solid electrolyte ionically couples the anode and the cathode. The solid electrolyte also comprises a melt-infiltration solid electrolyte composition that is disposed at least partially in at least one of the electrodes or in the separator.
    Type: Application
    Filed: December 18, 2019
    Publication date: April 23, 2020
    Inventors: Gleb YUSHIN, Adam KAJDOS, Eugene BERDICHEVSKY, Bogdan ZDYRKO
  • Publication number: 20200091517
    Abstract: An embodiment is directed to an electrode composition for use in an energy storage device cell. The electrode comprises composite particles, each comprising carbon that is biomass-derived and active material. The active material exhibits partial vapor pressure below around 10?13 torr at around 400 K, and an areal capacity loading of the electrode composition ranges from around 2 mAh/cm2 to around 16 mAh/cm2.
    Type: Application
    Filed: September 13, 2019
    Publication date: March 19, 2020
    Inventors: Gleb YUSHIN, Adam KAJDOS
  • Publication number: 20200083542
    Abstract: In an embodiment, a Li-ion battery electrode comprises a conductive interlayer arranged between a current collector and an electrode active material layer. The conductive interlayer comprises first conductive additives and a first polymer binder, and the electrode active material layer comprises a plurality of active material particles mixed with a second polymer binder (which may be the same as or different from the first polymer binder) and second conductive additives (which may be the same as or different from the first conductive additives). In a further embodiment, the Li-ion battery electrode may be fabricated via application of successive slurry formulations onto the current collector, with the resultant product then being calendared (or densified).
    Type: Application
    Filed: September 6, 2019
    Publication date: March 12, 2020
    Inventors: Gleb YUSHIN, Justin YEN, Jens STEIGER, Eniko ZSOLDOS, Mareva FEVRE, Adam KAJDOS, Weimin WANG