Patents by Inventor Adam Kisor

Adam Kisor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8338552
    Abstract: Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: December 25, 2012
    Assignee: California Institute of Technology
    Inventors: Margaret A. Ryan, Margie L. Homer, Shiao-Pin S. Yen, Adam Kisor, April D. Jewell, Abhijit V. Shevade, Kenneth S. Manatt, Charles Taylor, Mario Blanco, William A. Goddard
  • Patent number: 8024133
    Abstract: A sensor system for detecting and estimating concentrations of various gas or liquid analytes. In an embodiment, the resistances of a set of sensors are measured to provide a set of responses over time where the resistances are indicative of gas or liquid sorption, depending upon the sensors. A concentration vector for the analytes is estimated by satisfying a criterion of goodness using the set of responses. Other embodiments are described and claimed.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: September 20, 2011
    Assignee: California Institute of Technology
    Inventors: Margie L. Homer, Darrell L. Jan, April D. Jewell, Adam Kisor, Kenneth S. Manatt, Allison M. Manfreda, Margaret A. Ryan, Abhijit V. Shevade, Charles Taylor, Tuan A. Tran, Shiao-Pin S. Yen, Hanying Zhou
  • Publication number: 20110060114
    Abstract: Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.
    Type: Application
    Filed: November 16, 2010
    Publication date: March 10, 2011
    Inventors: Margaret A. Ryan, Margie L. Homer, Shiao-Pin S. Yen, Adam Kisor, April D. Jewell, Abhijit V. Shevade, Kenneth S. Manatt, Charles Taylor, Mario Blanco, William A. Goddard
  • Patent number: 7858720
    Abstract: Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: December 28, 2010
    Assignee: California Institute of Technology
    Inventors: Margaret A. Ryan, Margie L. Homer, Shiao-Pin S. Yen, Adam Kisor, April D. Jewell, Abhijit V. Shevade, Kenneth S. Manatt, Charles Taylor, Mario Blanco, William A. Goddard
  • Patent number: 7837913
    Abstract: Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers.
    Type: Grant
    Filed: August 10, 2005
    Date of Patent: November 23, 2010
    Assignee: California Institute of Technology
    Inventors: Jeff S. Sakamoto, James R. Weiss, Jean-Pierre Fleurial, Adam Kisor, Mark Tuszynski, Shula Stokols, Todd Edward Holt, David James Welker, Christopher David Breckon
  • Publication number: 20100286929
    Abstract: A sensor system for detecting and estimating concentrations of various gas or liquid analytes. In an embodiment, the resistances of a set of sensors are measured to provide a set of responses over time where the resistances are indicative of gas or liquid sorption, depending upon the sensors. A concentration vector for the analytes is estimated by satisfying a criterion of goodness using the set of responses. Other embodiments are described and claimed.
    Type: Application
    Filed: November 26, 2007
    Publication date: November 11, 2010
    Inventors: Margie L. Homer, Darrell L. Jan, April D. Jewell, Adam Kisor, Kenneth S. Manatt, Allison M. Manfreda, Margaret A. Ryan, Abhijit V. Shevade, Charles Taylor, Tuan A. Tran, Shiao-Pin S. Yen, Hanying Zhou
  • Publication number: 20100055144
    Abstract: Millimeter to nano-scale structures manufactured using a multi-component polymer fiber matrix are disclosed. The use of dissimilar polymers allows the selective dissolution of the polymers at various stages of the manufacturing process. In one application, biocompatible matrixes may be formed with long pore length and small pore size. The manufacturing process begins with a first polymer fiber arranged in a matrix formed by a second polymer fiber. End caps may be attached to provide structural support and the polymer fiber matrix selectively dissolved away leaving only the long polymer fibers. These may be exposed to another product, such as a biocompatible gel to form a biocompatible matrix. The polymer fibers may then be selectively dissolved leaving only a biocompatible gel scaffold with the pores formed by the dissolved polymer fibers.
    Type: Application
    Filed: August 10, 2005
    Publication date: March 4, 2010
    Applicant: California Institute of Technology
    Inventors: Jeff S. Sakamoto, James R. Weiss, Jean-Pierre Fleurial, Adam Kisor, Mark Tuszynski, Shula Stokols, Todd Edward Holt, David James Welker, Christopher David Breckon
  • Publication number: 20100022731
    Abstract: Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.
    Type: Application
    Filed: June 19, 2007
    Publication date: January 28, 2010
    Inventors: Margaret A. Ryan, Margie L. Homer, Shiao-Pin S. Yen, Adam Kisor, April D. Jewell, Abhijit V. Shevade, Kenneth S. Manatt, Charles Taylor, Mario Blanco, William A. Goddard