Patents by Inventor Adam Klingbeil

Adam Klingbeil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11905877
    Abstract: Methods and systems are provided for adjusting a location of a fuel injection in response to a substitution rate and a desired EGR flow. In one example, a method may include injecting a first fuel to a combustion chamber via a direct injector positioned to inject directly into the combustion chamber, injecting a second, different, fuel to the combustion chamber via an exhaust port injector positioned to inject toward an exhaust valve of the combustion chamber, and combusting the first and second fuels together in the combustion chamber.
    Type: Grant
    Filed: February 16, 2023
    Date of Patent: February 20, 2024
    Assignee: TRANSPORTATION IP HOLDINGS, LLC
    Inventors: Adam Klingbeil, Thomas Michael Lavertu
  • Publication number: 20230243294
    Abstract: Methods and systems are provided for a turbocharger. In one example, a method includes adjusting one or more of a wastegate position and a position of vanes with operation of a turbocharger to reach a desired turbocharger speed via a controller. The method further includes adjusting engine operating parameters to reach the desired turbocharger speed.
    Type: Application
    Filed: January 16, 2023
    Publication date: August 3, 2023
    Inventors: Thomas Lavertu, Adam Klingbeil, James Robert Mischler
  • Publication number: 20230193810
    Abstract: Methods and systems are provided for adjusting a location of a fuel injection in response to a substitution rate and a desired EGR flow. In one example, a method may include injecting a first fuel to a combustion chamber via a direct injector positioned to inject directly into the combustion chamber, injecting a second, different, fuel to the combustion chamber via an exhaust port injector positioned to inject toward an exhaust valve of the combustion chamber, and combusting the first and second fuels together in the combustion chamber.
    Type: Application
    Filed: February 16, 2023
    Publication date: June 22, 2023
    Inventors: Adam Klingbeil, Thomas Michael Lavertu
  • Patent number: 11338829
    Abstract: A system is provided that includes a controller configured to determine one or more propulsion-generating vehicles in a group of propulsion-generating vehicles that have an increased risk for damage to an engine system based on operation at a fueling level that is less than a designated threshold fueling level for at least a designated time period. The controller is further configured to determine respective power outputs for the propulsion-generating vehicles in the group such that the one or more propulsion-generating vehicles having the increased risk for damage to the engine system do not operate below the designated threshold fueling level for longer than the designated time period.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: May 24, 2022
    Assignee: Transportation IP Holdings, LLC
    Inventors: Adam Klingbeil, Thomas Lavertu, Roy Primus
  • Patent number: 10655571
    Abstract: Various methods for controlling EGR rate are disclosed. In one embodiment, a method comprises routing at least a portion of exhaust from a first exhaust manifold to an intake manifold, and not to atmosphere, the first exhaust manifold exclusively coupled to a first cylinder group. The method further includes routing exhaust from at least one additional exhaust manifold coupled to a corresponding at least one additional cylinder group to atmosphere, and during a first engine operating condition where an engine fuel demand is below a threshold demand, not injecting fuel to each of a subset of cylinders in the first cylinder group while injecting fuel to a subset of all cylinders coupled to the at least one additional exhaust manifold, where a number of cylinders of the subset of cylinders in the first cylinder group decreases in response to an increase in a target EGR rate.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: May 19, 2020
    Assignee: Transportation IP Holdings, LLC
    Inventors: Omowoleola Chukuwuemeka Akinyemi, Adam Klingbeil, Neil Xavier Blythe, Shawn Michael Gallagher, James Robert Mischler, Luke Henry, Jennifer Lynn Jackson
  • Publication number: 20200148235
    Abstract: A system is provided that includes a controller configured to determine one or more propulsion-generating vehicles in a group of propulsion-generating vehicles that have an increased risk for damage to an engine system based on operation at a fueling level that is less than a designated threshold fueling level for at least a designated time period. The controller is further configured to determine respective power outputs for the propulsion-generating vehicles in the group such that the one or more propulsion-generating vehicles having the increased risk for damage to the engine system do not operate below the designated threshold fueling level for longer than the designated time period.
    Type: Application
    Filed: January 20, 2020
    Publication date: May 14, 2020
    Inventors: Adam Klingbeil, Thomas Lavertu, Roy Primus
  • Patent number: 10557430
    Abstract: A system determines which propulsion-generating vehicle or vehicles in a group of propulsion-generating vehicles have an increased risk for oil carryover during operation at an idle setting for at least a designated oil carryover commencement time period. The system also determines a power requirement for the group of propulsion-generating vehicles in the vehicle system. The system determines power outputs for the propulsion-generating vehicles in the group such that the propulsion-generating vehicle or vehicles having the increased risk for oil carryover do not operate at an idle setting for longer than the designated oil carryover commencement period, and that the power generated by the group of propulsion-generating vehicles meets the power requirement that is determined.
    Type: Grant
    Filed: October 26, 2016
    Date of Patent: February 11, 2020
    Assignee: GE GLOBAL SOURCING LLC
    Inventors: Adam Klingbeil, Thomas Lavertu, Roy Primus
  • Publication number: 20180313303
    Abstract: Various methods for controlling EGR rate are disclosed. In one embodiment, a method comprises routing at least a portion of exhaust from a first exhaust manifold to an intake manifold, and not to atmosphere, the first exhaust manifold exclusively coupled to a first cylinder group. The method further includes routing exhaust from at least one additional exhaust manifold coupled to a corresponding at least one additional cylinder group to atmosphere, and during a first engine operating condition where an engine fuel demand is below a threshold demand, not injecting fuel to each of a subset of cylinders in the first cylinder group while injecting fuel to a subset of all cylinders coupled to the at least one additional exhaust manifold, where a number of cylinders of the subset of cylinders in the first cylinder group decreases in response to an increase in a target EGR rate.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 1, 2018
    Applicant: General Electric Company
    Inventors: Omowoleola Chukuwuemeka Akinyemi, Adam Klingbeil, Neil Xavier Blythe, Shawn Michael Gallagher, James Robert Mischler, Luke Henry, Jennifer Lynn Jackson
  • Patent number: 10030617
    Abstract: Various methods for controlling EGR rate are disclosed. In one embodiment, a method comprises routing at least a portion of exhaust from a first exhaust manifold to an intake manifold, and not to atmosphere, the first exhaust manifold exclusively coupled to a first cylinder group. The method further includes routing exhaust from at least one additional exhaust manifold coupled to a corresponding at least one additional cylinder group to atmosphere, and during a first engine operating condition where an engine fuel demand is below a threshold demand, not injecting fuel to each of a subset of cylinders in the first cylinder group while injecting fuel to a subset of all cylinders coupled to the at least one additional exhaust manifold, where a number of cylinders of the subset of cylinders in the first cylinder group decreases in response to an increase in a target EGR rate.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: July 24, 2018
    Assignee: General Electric Company
    Inventors: Omowoleola Chukuwuemeka Akinyemi, Adam Klingbeil, Neil Xavier Blythe, Shawn Michael Gallagher, James Robert Mischler, Luke Henry, Jennifer Lynn Jackson
  • Publication number: 20180112611
    Abstract: A system determines which propulsion-generating vehicle or vehicles in a group of propulsion-generating vehicles have an increased risk for oil carryover during operation at an idle setting for at least a designated oil carryover commencement time period. The system also determines a power requirement for the group of propulsion-generating vehicles in the vehicle system. The system determines power outputs for the propulsion-generating vehicles in the group such that the propulsion-generating vehicle or vehicles having the increased risk for oil carryover do not operate at an idle setting for longer than the designated oil carryover commencement period, and that the power generated by the group of propulsion-generating vehicles meets the power requirement that is determined.
    Type: Application
    Filed: October 26, 2016
    Publication date: April 26, 2018
    Inventors: Adam Klingbeil, Thomas Lavertu, Roy Primus
  • Patent number: 9932912
    Abstract: Various methods and systems are provided for an engine with an exhaust gas treatment system. In one example, under a first condition, a first fuel is delivered for combustion in the engine. Under a second condition, a second fuel is delivered for combustion in the engine, the second fuel different than the first fuel. Under a third condition, the first fuel is delivered as a reductant for the exhaust gas treatment system.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: April 3, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: David James Walker, Narendra Joshi, Adam Klingbeil
  • Publication number: 20160230712
    Abstract: Various methods for controlling EGR rate are disclosed. In one embodiment, a method comprises routing at least a portion of exhaust from a first exhaust manifold to an intake manifold, and not to atmosphere, the first exhaust manifold exclusively coupled to a first cylinder group. The method further includes routing exhaust from at least one additional exhaust manifold coupled to a corresponding at least one additional cylinder group to atmosphere, and during a first engine operating condition where an engine fuel demand is below a threshold demand, not injecting fuel to each of a subset of cylinders in the first cylinder group while injecting fuel to a subset of all cylinders coupled to the at least one additional exhaust manifold, where a number of cylinders of the subset of cylinders in the first cylinder group decreases in response to an increase in a target EGR rate.
    Type: Application
    Filed: April 18, 2016
    Publication date: August 11, 2016
    Applicant: General Electric Company
    Inventors: Omowoleola Chukuwuemeka Akinyemi, Adam Klingbeil, Neil Xavier Blythe, Shawn Michael Gallagher, James Robert Mischler, Luke Henry, Jennifer Lynn Jackson
  • Patent number: 9316165
    Abstract: Various methods for controlling EGR rate are disclosed. In one embodiment, a method for controlling EGR rate in an engine comprises routing exhaust from a first cylinder group to an intake coupled to the engine, and not to atmosphere, routing exhaust from a second cylinder group to atmosphere, and, during a first engine operating condition, injecting fuel to each cylinder in the first cylinder group while injecting fuel to a subset of cylinders of the second cylinder group.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: April 19, 2016
    Assignee: General Electric Company
    Inventors: Omowoleola Chukuwuemeka Akinyemi, Adam Klingbeil
  • Patent number: 9212630
    Abstract: Various methods and systems are provided for regeneration of an exhaust gas recirculation cooler. One example method includes adjusting cooling of exhaust gas by an exhaust gas recirculation cooler to maintain a manifold air temperature during an idle condition of an engine. The method further includes initiating regeneration of the exhaust gas recirculation cooler during the idle condition when an effectivity of the exhaust gas recirculation cooler falls below a threshold effectivity prior to or during the idle condition.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: December 15, 2015
    Assignee: General Electric Company
    Inventors: Eric David Peters, Adam Klingbeil, Michael Easter
  • Patent number: 9109545
    Abstract: Various systems and method for controlling exhaust gas recirculation in an internal combustion engine are provided. In one embodiment, a method for controlling an engine includes determining an actual intake oxygen concentration, adjusting a donor cylinder fuel injection amount to drive the actual intake oxygen concentration to a designated intake oxygen concentration, and adjusting a non-donor cylinder fuel injection amount dependent upon the donor cylinder fuel injection adjustment and to maintain a second operating parameter.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: August 18, 2015
    Assignee: General Electric Company
    Inventors: Adam Klingbeil, Omowoleola Chukuwuemeka Akinyemi, Wontae Hwang
  • Patent number: 8903631
    Abstract: Various methods and systems are provided for regenerating an exhaust gas recirculation cooler. One example method includes, routing exhaust gas from a donor cylinder group of an engine to an intake passage of the engine through the exhaust gas recirculation cooler, routing exhaust gas from a non-donor cylinder group of the engine to an exhaust passage of the engine, and adjusting fuel distribution among the donor cylinder group and the non-donor cylinder group responsive to a temperature of the exhaust gas recirculation cooler.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: December 2, 2014
    Assignee: General Electric Company
    Inventors: Adam Klingbeil, Roy Primus, Michael Easter, Eric David Peters
  • Publication number: 20130111875
    Abstract: Various methods and systems are provided for regeneration of an exhaust gas recirculation cooler. One example method includes adjusting cooling of exhaust gas by an exhaust gas recirculation cooler to maintain a manifold air temperature during an idle condition of an engine. The method further includes initiating regeneration of the exhaust gas recirculation cooler during the idle condition when an effectivity of the exhaust gas recirculation cooler falls below a threshold effectivity prior to or during the idle condition.
    Type: Application
    Filed: November 9, 2011
    Publication date: May 9, 2013
    Inventors: Eric David PETERS, Adam Klingbeil, Michael Easter
  • Publication number: 20130030672
    Abstract: Various systems and method for controlling exhaust gas recirculation in an internal combustion engine are provided. In one embodiment, a method for controlling an engine includes determining an actual intake oxygen concentration, adjusting a donor cylinder fuel injection amount to drive the actual intake oxygen concentration to a designated intake oxygen concentration, and adjusting a non-donor cylinder fuel injection amount dependent upon the donor cylinder fuel injection adjustment and to maintain a second operating parameter.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Inventors: Adam Klingbeil, Omowoleola Chukuwuemeka Akinyemi, Wontae Hwang
  • Publication number: 20120323470
    Abstract: Various methods and systems are provided for regenerating an exhaust gas recirculation cooler. One example method includes, routing exhaust gas from a donor cylinder group of an engine to an intake passage of the engine through the exhaust gas recirculation cooler, routing exhaust gas from a non-donor cylinder group of the engine to an exhaust passage of the engine, and adjusting fuel distribution among the donor cylinder group and the non-donor cylinder group responsive to a temperature of the exhaust gas recirculation cooler.
    Type: Application
    Filed: June 17, 2011
    Publication date: December 20, 2012
    Inventors: Adam Klingbeil, Roy Primus, Michael Easter, Eric David Peters
  • Publication number: 20120298070
    Abstract: Various methods for controlling EGR rate are disclosed. In one embodiment, a method for controlling EGR rate in an engine comprises routing exhaust from a first cylinder group to an intake coupled to the engine, and not to atmosphere, routing exhaust from a second cylinder group to atmosphere, and, during a first engine operating condition, injecting fuel to each cylinder in the first cylinder group while injecting fuel to a subset of cylinders of the second cylinder group.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 29, 2012
    Inventors: Omowoleola Chukuwuemeka Akinyemi, Adam Klingbeil