Patents by Inventor Adam Kotrba

Adam Kotrba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10801383
    Abstract: A system includes an engine having multiple cylinders and an exhaust manifold. A fuel delivery device and an igniter are disposed in the exhaust manifold. The fuel delivery device injects a fuel into the exhaust manifold. The system also includes an exhaust aftertreatment setup in fluid communication with the exhaust manifold, and a controller in communication with the multiple cylinders, the fuel delivery device and the igniter. The controller is configured to deactivate at least one cylinder to provide air to the exhaust manifold, and control the fuel delivery device to provide the fuel within the exhaust manifold such that the fuel and the air from the at least one deactivated cylinder forms a mixture within the exhaust manifold. The controller is configured to control the igniter to ignite the mixture to generate combustion products within the exhaust manifold for heating the exhaust aftertreatment setup.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: October 13, 2020
    Assignee: Tenneco Automotive Operating Company, Inc.
    Inventors: Charles Rackmil, Matthew Muhleck, Tom Harris, Timothy Gardner, David L Anderson, Pankaj Vazirani, Adam Kotrba
  • Patent number: 8353153
    Abstract: A system for controlling the temperature of an exhaust stream includes a main exhaust passageway adapted to receive the exhaust stream from an engine. A bypass passage includes an inlet and an outlet in communication with the main exhaust passageway. The outlet is located downstream from the inlet. A burner is positioned within the bypass passage for treating the exhaust passing through the bypass passage. A valve is positioned within the main exhaust passageway downstream from the inlet and upstream from the outlet. The valve is operable to vary the exhaust flow through the burner. A controller selectively operates the burner to maintain a desired exhaust temperature downstream of the outlet.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: January 15, 2013
    Assignee: Tenneco Automotive Operating Company Inc.
    Inventors: Adam Kotrba, Guanyu Zheng, Mike Golin, Gabriel Salanta
  • Publication number: 20110203261
    Abstract: A system for controlling the temperature of an exhaust stream includes a main exhaust passageway adapted to receive the exhaust stream from an engine. A bypass passage includes an inlet and an outlet in communication with the main exhaust passageway. The outlet is located downstream from the inlet. A burner is positioned within the bypass passage for treating the exhaust passing through the bypass passage. A valve is positioned within the main exhaust passageway downstream from the inlet and upstream from the outlet. The valve is operable to vary the exhaust flow through the burner. A controller selectively operates the burner to maintain a desired exhaust temperature downstream of the outlet.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 25, 2011
    Inventors: Adam Kotrba, Guanyu Zheng, Mike Golin, Gabriel Salanta
  • Publication number: 20070148057
    Abstract: Apparatus for inserting a substrate surrounded by a compressible mat into a compartment of a housing of an exhaust treatment device includes an insertion member having a bore shaped substantially identically to a shape of an opening to the housing compartment and a fluid bearing generator establishing a compressed fluid bearing at a surface of the bore. The fluid bearing is operative to reduce a coefficient of friction between the compressible mat and a surface of the bore when the substrate/mat combination is moved axially in the bore into the compartment opening.
    Type: Application
    Filed: December 21, 2006
    Publication date: June 28, 2007
    Inventors: Adam Kotrba, Keith Olivier