Patents by Inventor Adam Marblestone
Adam Marblestone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12064208Abstract: An optical measurement system comprising an optical source configured for delivering sample light in an anatomical structure, such that the sample light is scattered by the anatomical structure, resulting in physiological-encoded signal light that exits the anatomical structure, an optical detector configured for detecting the physiological-encoded signal light, and a processor configured for acquiring a TOF profile derived from the physiological-encoded signal light, the initial TOF profile having an initial contrast-to-noise ratio (CNR) between a plurality of states of a physiological activity in the anatomical structure. The processor is further configured for applying one or more weighting functions to the initial TOF profile to generate a weighted TOF profile having a subsequent CNR greater than the initial CNR between the plurality of states of the physiological activity.Type: GrantFiled: May 18, 2022Date of Patent: August 20, 2024Assignee: HI LLCInventors: Jamu Alford, Adam Marblestone, Ivo Vellekoop, Daniel Sobek, Michael Henninger, Brian Robinson, Yuecheng Shen, Roarke Horstmeyer
-
Patent number: 11857316Abstract: In a non-invasive optical detection system and method, sample light is delivered into a scattering medium. A first portion of the sample light passing through a volume of interest exits the scattering medium as signal light, and a second portion of the sample light passing through a volume of non-interest exits the scattering medium as background light that is combined with the signal light to create a sample light pattern. Reference light is combined with the sample light pattern to create an interference light pattern having a holographic beat component. Ultrasound is emitted into the volume of non-interest in a manner that decorrelates the background light of the sample light pattern from the holographic beat component. The holographic beat component is detected during the measurement period. An optical parameter of the volume of interest is determined based on the detected holographic beat component.Type: GrantFiled: April 12, 2019Date of Patent: January 2, 2024Assignee: HI LLCInventors: Jamu Alford, Ashutosh Chaturvedi, Adam Marblestone
-
Publication number: 20230301515Abstract: An optical measurement system comprising an optical source configured for delivering sample light in an anatomical structure, such that the sample light is scattered by the anatomical structure, resulting in physiological-encoded signal light that exits the anatomical structure, an optical detector configured for detecting the physiological-encoded signal light, and a processor configured for acquiring a TOF profile derived from the physiological-encoded signal light, the initial TOF profile having an initial contrast-to-noise ratio (CNR) between a plurality of states of a physiological activity in the anatomical structure. The processor is further configured for applying one or more weighting functions to the initial TOF profile to generate a weighted TOF profile having a subsequent CNR greater than the initial CNR between the plurality of states of the physiological activity.Type: ApplicationFiled: May 18, 2023Publication date: September 28, 2023Applicant: HI LLCInventors: Jamu Alford, Adam Marblestone, Ivo Vellekoop, Daniel Sobek, Michael Henninger, Brian Robinson, Yuecheng Shen, Roarke Horstmeyer
-
Patent number: 11547303Abstract: An optical source sweeps a source light over an optical wavelength range. An interferometer splits the source light into sample light and reference light, delivers the sample light into an anatomical structure, such that the sample light is scattered by the anatomical structure, resulting in physiological-encoded signal light that exits the anatomical structure, and combines the signal light and the reference light into an interference light pattern having an array of spatial components and a plurality of oscillation frequency components. An optical detector array detects intensity values of the array of spatial components.Type: GrantFiled: April 24, 2019Date of Patent: January 10, 2023Assignee: HI LLCInventors: Haowen Ruan, Adam Marblestone, Roarke Horstmeyer, Yuecheng Shen, Haojiang Zhou, Jamu Alford
-
Patent number: 11412930Abstract: An optical measurement system comprising an optical source configured for delivering sample light in an anatomical structure, such that the sample light is scattered by the anatomical structure, resulting in physiological-encoded signal light that exits the anatomical structure, an optical detector configured for detecting the physiological-encoded signal light, and a processor configured for acquiring a TOF profile derived from the physiological-encoded signal light, the initial TOF profile having an initial contrast-to-noise ratio (CNR) between a plurality of states of a physiological activity in the anatomical structure. The processor is further configured for applying one or more weighting functions to the initial TOF profile to generate a weighted TOF profile having a subsequent CNR greater than the initial CNR between the plurality of states of the physiological activity.Type: GrantFiled: August 6, 2019Date of Patent: August 16, 2022Assignee: HI LLCInventors: Jamu Alford, Adam Marblestone, Ivo Vellekoop, Daniel Sobek, Michael Henninger, Brian Robinson, Yuecheng Shen, Roarke Horstmeyer
-
Patent number: 11291370Abstract: Disclosed herein are devices and methods for modifying a conventional imager to have functional features similar to that of a lock-in camera. Optical mask devices are configured to be coupled to conventional imager sensors and the configuration of the mask devices can be adjusted to acquire image data in rapid succession. One variation of an optical mask device comprises a substrate comprising a pattern of light-blocking and light-transmitting regions and an attachment structure for coupling the optical mask device to the imager. The substrate is configured to adjust the position of the light-blocking regions and light-transmitting regions relative to the light-sensing region of the imager based on a set of one or more predetermined substrate configurations. In some variations, the mask device and/or the imager sensor may be mechanically moved relative to each other based on the set of one or more predetermined substrate configurations.Type: GrantFiled: May 24, 2019Date of Patent: April 5, 2022Assignee: HI LLCInventors: Jamu Alford, Adam Marblestone
-
Patent number: 11206985Abstract: A non-invasive optical detection system and method are provided. Sample light is delivered into a target volume of interest, whereby the sample light is scattered by the target volume of interest, resulting in a sample light pattern that exits the anatomical structure. Reference light is combined with the sample light pattern to generate at least one interference light pattern, each of which may have a time varying interference component that integrates to a first value in the absence of the physiological event, and that integrates to a second greater value in the presence of the physiological event. Intensities of spatial components of each interference light pattern are detected during a measurement period. A function of the detected spatial component intensities of the interference light pattern(s) is analyzed, and a presence of the physiological event in the target volume of interest is determined based on the analysis.Type: GrantFiled: March 11, 2019Date of Patent: December 28, 2021Assignee: HI LLCInventors: Jamu Alford, Adam Marblestone
-
Patent number: 11058301Abstract: An optical detection method and system are provided. Sample light is delivered into an anatomical structure having a target voxel, whereby a portion of the sample light passing through the target voxel is scattered by the anatomical structure as signal light, and another portion of the sample light not passing through the target voxel is scattered by the anatomical structure as background light that is combined with the signal light to create a sample light pattern. The sample light pattern and the reference light having an M number of different phases are concurrently combined to respectively generate an M number of interference light patterns. The M number of interference light patterns are detected. M pluralities of values representative of spatial components of the respective M number of interference light patterns are generated, and a physiologically-dependent optical parameter of the target voxel is determined based on the M pluralities of values.Type: GrantFiled: March 29, 2018Date of Patent: July 13, 2021Assignee: HI LLCInventors: Changhuei Yang, Adam Marblestone, Jamu Alford, Daniel Sobek
-
Patent number: 10881300Abstract: Described herein are systems and methods for noninvasive functional brain imaging using low-coherence interferometry (e.g., for the purpose of creating a brain computer interface with higher spatiotemporal resolution). One variation of a system and method comprises optical interference components and techniques using a lock-in camera. The system comprises a light source and a processor configured to rapidly phase-shift the reference light beam across a pre-selected set of phase shifts or offsets, to store a set of interference patterns associated with each of these pre-selected phase shifts, and to process these stored interference patterns to compute an estimate of the number of photons traveling between a light source and the lock-in camera detector for which the path length falls within a user-defined path length range.Type: GrantFiled: January 11, 2019Date of Patent: January 5, 2021Assignee: HI LLCInventors: Changhuei Yang, Adam Marblestone, Jamu Alford
-
Publication number: 20200060542Abstract: An optical measurement system comprising an optical source configured for delivering sample light in an anatomical structure, such that the sample light is scattered by the anatomical structure, resulting in physiological-encoded signal light that exits the anatomical structure, an optical detector configured for detecting the physiological-encoded signal light, and a processor configured for acquiring a TOF profile derived from the physiological-encoded signal light, the initial TOF profile having an initial contrast-to-noise ratio (CNR) between a plurality of states of a physiological activity in the anatomical structure. The processor is further configured for applying one or more weighting functions to the initial TOF profile to generate a weighted TOF profile having a subsequent CNR greater than the initial CNR between the plurality of states of the physiological activity.Type: ApplicationFiled: August 6, 2019Publication date: February 27, 2020Applicant: HI LLCInventors: Jamu Alford, Adam Marblestone, Ivo Vellekoop, Daniel Sobek, Michael Henninger, Brian Robinson, Yuecheng Shen, Roarke Horstmeyer
-
Publication number: 20190336005Abstract: An optical measurement system comprises an optical source assembly configured for intensity modulating sample light at multiple frequencies within a frequency range, and delivering the intensity modulated sample light along an optical path of an anatomical structure during a single measurement period, such that the intensity modulated sample light is scattered by the anatomical structure, resulting in signal light that exits the anatomical structure. The optical measurement system further comprises an optical detection assembly configured for detecting the signal light over the frequency range within the measurement period. The optical measurement system further comprises a processor configured for analyzing the detected signal light, and, based on this analysis, determining an occurrence and spatial depth of a physiological event in the anatomical structure.Type: ApplicationFiled: April 9, 2019Publication date: November 7, 2019Applicant: HI LLCInventors: Jamu Alford, Roarke Horstmeyer, Adam Marblestone
-
Publication number: 20190336057Abstract: In a non-invasive optical detection system and method, sample light is delivered into a scattering medium. A first portion of the sample light passing through a volume of interest exits the scattering medium as signal light, and a second portion of the sample light passing through a volume of non-interest exits the scattering medium as background light that is combined with the signal light to create a sample light pattern. Reference light is combined with the sample light pattern to create an interference light pattern having a holographic beat component. Ultrasound is emitted into the volume of non-interest in a manner that decorrelates the background light of the sample light pattern from the holographic beat component. The holographic beat component is detected during the measurement period. An optical parameter of the volume of interest is determined based on the detected holographic beat component.Type: ApplicationFiled: April 12, 2019Publication date: November 7, 2019Applicant: HI LLCInventors: Jamu Alford, Ashutosh Chaturvedi, Adam Marblestone
-
Publication number: 20190336007Abstract: An optical source sweeps a source light over an optical wavelength range. An interferometer splits the source light into sample light and reference light, delivers the sample light into an anatomical structure, such that the sample light is scattered by the anatomical structure, resulting in physiological-encoded signal light that exits the anatomical structure, and combines the signal light and the reference light into an interference light pattern having an array of spatial components and a plurality of oscillation frequency components. An optical detector array detects intensity values of the array of spatial components.Type: ApplicationFiled: April 24, 2019Publication date: November 7, 2019Applicant: HI LLCInventors: Haowen Ruan, Adam Marblestone, Roarke Horstmeyer, Yuecheng Shen, Haojiang Zhou, Jamu Alford
-
Publication number: 20190313912Abstract: A non-invasive optical detection system and method are provided. Sample light is delivered into a target volume of interest, whereby the sample light is scattered by the target volume of interest, resulting in a sample light pattern that exits the anatomical structure. Reference light is combined with the sample light pattern to generate at least one interference light pattern, each of which may have a time varying interference component that integrates to a first value in the absence of the physiological event, and that integrates to a second greater value in the presence of the physiological event. Intensities of spatial components of each interference light pattern are detected during a measurement period. A function of the detected spatial component intensities of the interference light pattern(s) is analyzed, and a presence of the physiological event in the target volume of interest is determined based on the analysis.Type: ApplicationFiled: March 11, 2019Publication date: October 17, 2019Applicant: HI LLCInventors: Jamu Alford, Adam Marblestone
-
Patent number: 10420469Abstract: A non-invasive system and method. Sample light is delivered into an anatomical structure, such that a portion of the sample light passes through a target voxel comprising brain matter in the head and is scattered by the head as signal light. The signal light is detected, changes in the level of water concentration or relative water concentration of the target voxel are detected based on the detected signal light, and a level of neural activity is determined within the target voxel based on the determined changes level of the water concentration or relative water concentration of the target voxel.Type: GrantFiled: December 15, 2017Date of Patent: September 24, 2019Assignee: HI LLCInventors: Daniel Sobek, Changhuei Yang, Adam Marblestone, Jamu Alford
-
Publication number: 20190274548Abstract: Disclosed herein are devices and methods for modifying a conventional imager to have functional features similar to that of a lock-in camera. Optical mask devices are configured to be coupled to conventional imager sensors and the configuration of the mask devices can be adjusted to acquire image data in rapid succession. One variation of an optical mask device comprises a substrate comprising a pattern of light-blocking and light-transmitting regions and an attachment structure for coupling the optical mask device to the imager. The substrate is configured to adjust the position of the light-blocking regions and light-transmitting regions relative to the light-sensing region of the imager based on a set of one or more predetermined substrate configurations. In some variations, the mask device and/or the imager sensor may be mechanically moved relative to each other based on the set of one or more predetermined substrate configurations.Type: ApplicationFiled: May 24, 2019Publication date: September 12, 2019Inventors: Jamu Alford, Adam Marblestone
-
Publication number: 20190269331Abstract: Sample light is delivered into the anatomical structure having a target voxel, whereby a portion of the sample light passing through the target voxel is scattered by the anatomical structure as signal light, and another portion of the sample light not passing through the target voxel is scattered by the anatomical structure as background light that is combined with the signal light to create a sample light pattern. Reference light is combined with the sample light pattern to generate an interference light pattern, such that the signal light and the reference light are combined in a heterodyne manner. Ultrasound is delivered into the target voxel, such that the signal light is frequency shifted by the ultrasound. The ultrasound and the sample light are pulsed in synchrony at the target voxel, such that at least one pulse of the sample light has a combined duration less than a pulse width of the ultrasound.Type: ApplicationFiled: February 4, 2019Publication date: September 5, 2019Applicant: HI LLCInventors: Jamu Alford, Adam Marblestone, Changhuei Yang
-
Patent number: 10368752Abstract: Disclosed herein are devices and methods for modifying a conventional imager to have functional features similar to that of a lock-in camera. Optical mask devices are configured to be coupled to conventional imager sensors and the configuration of the mask devices can be adjusted to acquire image data in rapid succession. One variation of an optical mask device comprises a substrate comprising a pattern of light-blocking and light-transmitting regions and an attachment structure for coupling the optical mask device to the imager. The substrate is configured to adjust the position of the light-blocking regions and light-transmitting regions relative to the light-sensing region of the imager based on a set of one or more predetermined substrate configurations. In some variations, the mask device and/or the imager sensor may be mechanically moved relative to each other based on the set of one or more predetermined substrate configurations.Type: GrantFiled: May 24, 2018Date of Patent: August 6, 2019Assignee: HI LLCInventors: Jamu Alford, Adam Marblestone
-
Patent number: 10335036Abstract: A system and method of performing ultrasound modulated optical tomography. Ultrasound is delivered into a target voxel in an anatomical structure, and sample light is delivered into the anatomical structure, whereby a portion of the sample light passing through the target voxel is scattered by the biological tissue as signal light, and a portion of the sample light not passing through the target voxel is scattered by the anatomical structure as background light. The ultrasound and sample light are pulsed in synchrony, such that only the signal light is frequency shifted by the ultrasound. Reference light is combined with the signal light and background light to generate an interference light pattern, which is sequentially modulated to generate a plurality of different interference light patterns. Spatial components of each of the different interference light patterns are simultaneously detected and stored in bins.Type: GrantFiled: December 15, 2017Date of Patent: July 2, 2019Assignee: HI LLCInventors: Changhuei Yang, Adam Marblestone, Jamu Alford
-
Publication number: 20190183343Abstract: Described herein are systems and methods for noninvasive functional brain imaging using low-coherence interferometry (e.g., for the purpose of creating a brain computer interface with higher spatiotemporal resolution). One variation of a system and method comprises optical interference components and techniques using a lock-in camera. The system comprises a light source and a processor configured to rapidly phase-shift the reference light beam across a pre-selected set of phase shifts or offsets, to store a set of interference patterns associated with each of these pre-selected phase shifts, and to process these stored interference patterns to compute an estimate of the number of photons traveling between a light source and the lock-in camera detector for which the path length falls within a user-defined path length range.Type: ApplicationFiled: January 11, 2019Publication date: June 20, 2019Applicant: HI LLCInventors: Changhuei YANG, Adam MARBLESTONE, Jamu ALFORD