Patents by Inventor Adam Morris

Adam Morris has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109564
    Abstract: A method is provided that can include activating at least two wireless communication channels in parallel, between a first wireless transceiver and a second wireless transceiver. Each of the at least two wireless communication channels can operate at a different radio carrier frequency, and the first wireless transceiver may be part of a first vehicle. The method can also include transmitting, by the first wireless transceiver, common information in parallel on the at least two wireless communication channels to the second wireless transceiver and deactivating the at least two wireless communication channels.
    Type: Application
    Filed: December 12, 2023
    Publication date: April 4, 2024
    Inventors: Padam Dhoj Swar, Carl L. Haas, Danial Rice, Rebecca W. Dreasher, Adam Hausmann, Matthew Steven Vrba, Edward J. Kuchar, James Lucas, Andrew Ryan Staats, Jerrid D. Chapman, Jeffrey D. Kernwein, Janmejay Tripathy, Stephen Craven, Tania Lindsley, Derek K. Woo, Ann K. Grimm, Scott Sollars, Phillip A. Burgart, James Allen Oswald, Shannon K. Struttmann, Stuart J. Barr, Keith Smith, Francois P. Pretorius, Craig K. Green, Kendrick Gawne, Irwin Morris, Joseph W. Gorman, Srivallidevi Muthusami, Mahesh Babu Natarajan, Jeremiah Dirnberger, Adam Franco
  • Publication number: 20240113313
    Abstract: The present invention relates to methods and apparatuses for determining the ratio of oxidized and reduced forms of a redox couple in solution, each method comprising: contacting first and second stationary working electrodes and first and second counter electrode to the solution; applying a first potential at the first stationary working electrode and a second potential at the second stationary working electrode relative to the respective counter electrodes and measuring first and second constant currents for the first and second stationary working electrodes, respectively; wherein the first and second constant currents have opposite signs and the ratio of the absolute values of the first and second constant currents reflects the ratio of the oxidized and reduced forms of the redox couple in solution. When used in the context of monitoring/controlling electrochemical cells, additional embodiments include those further comprising oxidizing or reducing the solution.
    Type: Application
    Filed: December 1, 2023
    Publication date: April 4, 2024
    Inventors: Evan R. King, Kean Duffey, Adam Morris-Cohen, John Goeltz, Steven Y. Reece
  • Patent number: 11929528
    Abstract: The present invention relates to methods and apparatuses for determining the ratio of oxidized and reduced forms of a redox couple in solution, each method comprising: contacting first and second stationary working electrodes and first and second counter electrode to the solution; applying a first potential at the first stationary working electrode and a second potential at the second stationary working electrode relative to the respective counter electrodes and measuring first and second constant currents for the first and second stationary working electrodes, respectively; wherein the first and second constant currents have opposite signs and the ratio of the absolute values of the first and second constant currents reflects the ratio of the oxidized and reduced forms of the redox couple in solution. When used in the context of monitoring/controlling electrochemical cells, additional embodiments include those further comprising oxidizing or reducing the solution.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: March 12, 2024
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Evan R. King, Kean Duffey, Adam Morris-Cohen, John Goeltz, Steven Y. Reece
  • Patent number: 11926100
    Abstract: A method is disclosed for additively manufacturing a structure. The method may include slicing a virtual model of the structure into a plurality of layers, applying at least one infill pattern to each of the plurality of layers, and distributing a plurality of points along lines of the at least one infill pattern. The method may also include sequentially grouping the plurality of points into at least one path, validating the at least one path for fabrication by an additive manufacturing machine, and causing the additive manufacturing machine to discharge material along the validated at least one path.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: March 12, 2024
    Assignee: Continuous Composites Inc.
    Inventors: Logan Lalonde, Brock Adam Jahner, Mikel Negugogor, Rachael Kathleen Morris
  • Patent number: 11916272
    Abstract: Provided are flow batteries that include a fluidic train within a dynamic fluidic network system which fluidic train is convertible between a first state and a second state, the first state the first state placing a main electrolyte source and a dynamic fluidic network, outside the fluidic train and an electrode region, into fluid communication with the electrode region and the second state placing the main electrolyte source and the dynamic fluidic network, outside the fluidic train and the electrode region, into fluid isolation from the electrode region and placing the electrode region into fluid communication with a sampling segment. Also provided are methods of operating flow batteries.
    Type: Grant
    Filed: August 23, 2023
    Date of Patent: February 27, 2024
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Michael Bufano, Jeremy S. Loretz, Jonathan Hamel, Kean L Duffey, Adam Morris-Cohen
  • Publication number: 20240014428
    Abstract: Provided are flow batteries that include a fluidic train within a dynamic fluidic network system which fluidic train is convertible between a first state and a second state, the first state the first state placing a main electrolyte source and a dynamic fluidic network, outside the fluidic train and an electrode region, into fluid communication with the electrode region and the second state placing the main electrolyte source and the dynamic fluidic network, outside the fluidic train and the electrode region, into fluid isolation from the electrode region and placing the electrode region into fluid communication with a sampling segment. Also provided are methods of operating flow batteries.
    Type: Application
    Filed: August 23, 2023
    Publication date: January 11, 2024
    Applicant: Lockheed Martin Energy, LLC
    Inventors: Michael BUFANO, Jeremy S. LORETZ, Jonathan HAMEL, Kean L. DUFFEY, Adam MORRIS-COHEN
  • Publication number: 20240006635
    Abstract: Provided are flow batteries, comprising: a first reservoir containing a first electrolyte solution and one or more battery packs. A battery pack comprises a battery stack, an enclosure enclosing the battery stack, a first supply flow path, and a first return flow path. The first supply flow path comprises a substantially U-shaped bend such that a first portion of the first supply flow path and a second portion of the first supply flow path are positioned substantially parallel to each other and within the enclosure. The first return flow path comprises a substantially U-shaped bend such that a first portion of the first return flow path and a second portion of the first return flow path are positioned substantially parallel to each other and within the enclosure. These flow batteries are useful to mitigate inter-stack shunt currents.
    Type: Application
    Filed: June 28, 2023
    Publication date: January 4, 2024
    Inventors: Andrew Joseph Melough, Kean Duffey, Adam Morris-Cohen, Paolo Piagi
  • Patent number: 11777128
    Abstract: Provided are flow batteries that include a fluidic train within a dynamic fluidic network system which fluidic train is convertible between a first state and a second state, the first state the first state placing a main electrolyte source and a dynamic fluidic network, outside the fluidic train and an electrode region, into fluid communication with the electrode region and the second state placing the main electrolyte source and the dynamic fluidic network, outside the fluidic train and the electrode region, into fluid isolation from the electrode region and placing the electrode region into fluid communication with a sampling segment. Also provided are methods of operating flow batteries.
    Type: Grant
    Filed: July 1, 2022
    Date of Patent: October 3, 2023
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Michael Bufano, Jeremy S. Loretz, Jonathan Hamel, Kean L. Duffey, Adam Morris-Cohen
  • Publication number: 20230271232
    Abstract: A system configured to protect valuable, sensitive, or electro-mechanical equipment during cleaning of the equipment can include a cover having a single opening leading to an interior cavity. The cover can be waterproof. A plate can be permanently attached to the cable of the equipment. An outer periphery of the plate can be approximately the same size as an inner periphery of the opening. The plate can be configured to sealingly fit within the single opening. The system can include a latching mechanism configured to sealingly attach the plate to the cover.
    Type: Application
    Filed: February 25, 2022
    Publication date: August 31, 2023
    Inventors: Ralf Seip, Grant Adam Morris, Kelly Ledbetter, Ashok Mehta, Joshua Huff
  • Publication number: 20230246819
    Abstract: Techniques are disclosed for public key infrastructure (PKI) based session authentication. An example network device includes one or more processors and memory coupled to the one or more processors. The memory stores instructions that, upon execution, cause one or more processors to: receive, from a source client device, a packet including a header for routing the packet to a destination client device specified within the header and metadata distinct from the header, the metadata specifying public key infrastructure (PKI) information and identity context information identifying a user or device participating in a session between the source client device and the destination client device; verify, based on the PKI information within the metadata, the metadata; and in response to verifying the metadata, apply, based on the identity context information, one or more policy rules for the session associated with the packet.
    Type: Application
    Filed: February 1, 2022
    Publication date: August 3, 2023
    Inventors: Robert Walter Schumann, III, Jeremy Guiles, Boris Kilimnik, Donald Brian Troshynski, Adam Morris
  • Patent number: 11441175
    Abstract: Methods and kits for depleting amplicons that correspond to undesired RNA species present in a sample are provided. The disclosed methods and kits employ a blocker that anneals with at least a portion of the undesired RNA, resulting in a duplex that is not a suitable substrate for ligating an adapter to the end of the undesired RNA.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: September 13, 2022
    Assignee: BIOO Scientific Corporation
    Inventors: Suk Ho Eun, Adam Morris
  • Patent number: 11326160
    Abstract: This disclosure provides, among other things, a method for making a cDNA library. In some embodiments the method may comprise reverse transcribing mRNA to produce DNA:mRNA hybrids, treating the DNA:mRNA hybrids with RNAseH to produce mRNA fragments, and reverse transcribing the mRNA fragments.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: May 10, 2022
    Assignee: BIOO SCIENTIFIC CORPORATION
    Inventors: Kevin Allen, Adam Morris
  • Publication number: 20210339052
    Abstract: There is presented a removable high-intensity focused ultrasound (HIFU) transducer and supporting system that allows for HIFU transducer assemblies and other therapeutic ultrasound assemblies to be attached to third party positioning, imaging, or guidance systems while maintaining the required focal-zone positioning ability and the required acoustic energy coupling to tissue, to mechanically or automatically ablate a target volume in unimpeded fashion. There is provided an acoustically transparent and pliable vessel that has an open top end and filled with acoustic coupling fluid, capable of holding the transducer assembly and distal end of the positioning system within it as it executes the HIFU treatment plan/process. The vessel is held in place using a transducer/positioning system and independent external fixturing mechanism.
    Type: Application
    Filed: March 9, 2021
    Publication date: November 4, 2021
    Inventors: Ralf Seip, Mark Carol, Ron Hadani, Yosef Krespi, Grant Adam Morris, Joshua Huff
  • Patent number: 10903511
    Abstract: The circulation rates of the electrolyte solutions in a flow battery can impact operating performance. Adjusting the circulation rates can allow improved performance to be realized. Flow battery systems having adjustable circulation rates can include a first half-cell containing a first electrolyte solution, a second half-cell containing a second electrolyte solution, at least one pump configured to circulate the first electrolyte solution and the second electrolyte solution at adjustable circulation rates through at least one half-cell in response to a value of Pexit/I or I/Penter, and at least one sensor configured to measure net electrical power entering or exiting the flow battery system, and an amount of electrical current passing through the whole cell. I is the electrical power passing through the whole cell. Pexit is net electrical power exiting the system in a discharging mode, and Penter is net electrical power entering the system in a charging mode.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: January 26, 2021
    Assignee: Lockheed Martin Energy, LLC
    Inventor: Adam Morris-Cohen
  • Publication number: 20200381751
    Abstract: The present invention relates to methods and apparatuses for determining the ratio of oxidized and reduced forms of a redox couple in solution, each method comprising: contacting first and second stationary working electrodes and first and second counter electrode to the solution; applying a first potential at the first stationary working electrode and a second potential at the second stationary working electrode relative to the respective counter electrodes and measuring first and second constant currents for the first and second stationary working electrodes, respectively; wherein the first and second constant currents have opposite signs and the ratio of the absolute values of the first and second constant currents reflects the ratio of the oxidized and reduced forms of the redox couple in solution. When used in the context of monitoring/controlling electrochemical cells, additional embodiments include those further comprising oxidizing or reducing the solution.
    Type: Application
    Filed: August 19, 2020
    Publication date: December 3, 2020
    Inventors: Evan R. King, Kean Duffey, Adam Morris-Cohen, John Goeltz, Steven Y. Reece
  • Patent number: 10833340
    Abstract: The present invention relates to methods and apparatuses for determining the ratio of oxidized and reduced forms of a redox couple in solution, each method comprising: (a) contacting a first stationary working electrode and a first counter electrode to the solution; (b) applying a first potential at the first working electrode and measuring a first constant current; (c) applying a second potential at the first working electrode and measuring a second constant current; wherein the sign of the first and second currents are not the same; and wherein the ratio of the absolute values of the first and second currents reflects the ratio of the oxidized and reduced forms of the redox couple in solution.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: November 10, 2020
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Evan R. King, Kean Duffey, Adam Morris-Cohen, John Goeltz, Steven Y. Reece
  • Publication number: 20200291393
    Abstract: This disclosure provides, among other things, a method for making a cDNA library. In some embodiments the method may comprise reverse transcribing mRNA to produce DNA:mRNA hybrids, treating the DNA:mRNA hybrids with RNAseH to produce mRNA fragments, and reverse transcribing the mRNA fragments.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Inventors: Kevin Allen, Adam Morris
  • Patent number: 10711271
    Abstract: This disclosure provides, among other things, a method for making a cDNA library. In some embodiments the method may comprise reverse transcribing mRNA to produce DNA:mRNA hybrids, treating the DNA:mRNA hybrids with RNAseH to produce mRNA fragments, and reverse transcribing the mRNA fragments.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: July 14, 2020
    Assignee: BIOO SCIENTIFIC CORPORATION
    Inventors: Kevin Allen, Adam Morris
  • Patent number: 10497958
    Abstract: Coordinatively saturated titanium (IV) coordination compounds containing catecholate ligands can be desirable active materials for flow batteries and other electrochemical energy storage systems. Such coordination compounds can be formed advantageously via an intermediate composition containing a coordinatively unsaturated titanium (IV) coordination compound. More specifically, such compositions can include a coordinatively unsaturated titanium (IV) coordination compound having a coordination number of 5 or less and containing two catecholate ligands, wherein the composition is substantially free of non-ligated catechol compound.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: December 3, 2019
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Matthew Millard, Adam Morris-Cohen, Roger Frisbee
  • Patent number: 10418647
    Abstract: Productive electrochemical reactions can often occur most effectively in proximity to a separator dividing an electrochemical cell into two half-cells. Parasitic reactions can often occur at locations more removed from the separator. Parasitic reactions are generally undesirable in flow batteries and other electrochemical systems, since they can impact operating performance. Flow batteries having a decreased incidence of parasitic reactions can include, a first half-cell containing a first electrode, a second half-cell containing a second electrode, a separator disposed between the first half-cell and the second half-cell and contacting the first and second electrodes, a first bipolar plate contacting the first electrode, and a second bipolar plate contacting the second electrode, where a portion of the first electrode or the first bipolar plate contains a dielectric material.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: September 17, 2019
    Assignee: Lockheed Martin Energy, LLC
    Inventors: Adam Morris-Cohen, Srivatsava Puranam, John Goeltz, Arthur J. Esswein