Patents by Inventor Adam N. McCaughan

Adam N. McCaughan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11329211
    Abstract: An active three-terminal superconducting device having an intersection region at which a hot spot may be controllably formed is described. The intersection region may exhibit current crowding in response to imbalances in current densities applied to channels connected to intersection region. The current crowding may form a hot spot, in which the superconducting device may exhibit a measurable resistance. In some cases, a three-terminal superconducting device may be configured to sense an amount of superconducting current flowing in a channel or loop without having to perturb the superconducting state or amount of current flowing in the channel. A three-terminal superconducting device may be used to read out a number of fluxons stored in a superconducting memory element.
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: May 10, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Adam N. McCaughan, Karl K. Berggren, Qingyuan Zhao
  • Patent number: 11283002
    Abstract: A primary single photon optoelectronic neuron includes a photonic synaptic input waveguide; an optoelectronic synapse; a synapto-dendritic electrical connection in communication with the optoelectronic synapse; an electronic dendrite in communication with the synapto-dendritic electrical connection; a dendrite-neuronal electrical interface in communication with the electronic dendrite; an integrator in communication with the dendrite-neuronal electrical interface; a superconducting wire in communication with the integrator; an axon hillock electronic-to-photonic transducer in communication with the superconducting wire; and an axonic waveguide in communication with the axon hillock electronic-to-photonic transducer and that receives the axonic photonic signal.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: March 22, 2022
    Assignee: GOVERNMENT OF THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Jeffrey M. Shainline, Manuel A. Castellanos-Beltran, Adam N. McCaughan, Sae Woo Nam
  • Publication number: 20210028343
    Abstract: An active three-terminal superconducting device having an intersection region at which a hot spot may be controllably formed is described. The intersection region may exhibit current crowding in response to imbalances in current densities applied to channels connected to intersection region. The current crowding may form a hot spot, in which the superconducting device may exhibit a measurable resistance. In some cases, a three-terminal superconducting device may be configured to sense an amount of superconducting current flowing in a channel or loop without having to perturb the superconducting state or amount of current flowing in the channel. A three-terminal superconducting device may be used to read out a number of fluxons stored in a superconducting memory element.
    Type: Application
    Filed: August 13, 2020
    Publication date: January 28, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: Adam N. McCaughan, Karl K. Berggren, Qingyuan Zhao
  • Patent number: 10749097
    Abstract: An active three-terminal superconducting device having an intersection region at which a hot spot may be controllably formed is described. The intersection region may exhibit current crowding in response to imbalances in current densities applied to channels connected to intersection region. The current crowding may form a hot spot, in which the superconducting device may exhibit a measurable resistance. In some cases, a three-terminal superconducting device may be configured to sense an amount of superconducting current flowing in a channel or loop without having to perturb the superconducting state or amount of current flowing in the channel. A three-terminal superconducting device may be used to read out a number of fluxons stored in a superconducting memory element.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: August 18, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Adam N. McCaughan, Karl K. Berggren, Qingyuan Zhao
  • Publication number: 20200052183
    Abstract: A primary single photon optoelectronic neuron includes a photonic synaptic input waveguide; an optoelectronic synapse; a synapto-dendritic electrical connection in communication with the optoelectronic synapse; an electronic dendrite in communication with the synapto-dendritic electrical connection; a dendrite-neuronal electrical interface in communication with the electronic dendrite; an integrator in communication with the dendrite-neuronal electrical interface; a superconducting wire in communication with the integrator; an axon hillock electronic-to-photonic transducer in communication with the superconducting wire; and an axonic waveguide in communication with the axon hillock electronic-to-photonic transducer and that receives the axonic photonic signal.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 13, 2020
    Inventors: Jeffrey M. Shainline, Manuel A. Castellanos-Beltran, Adam N. McCaughan, Sae Woo Nam
  • Patent number: 10171086
    Abstract: A three-terminal device that exhibits transistor-like functionality at cryogenic temperatures may be formed from a single layer of superconducting material. A main current-carrying channel of the device may be toggled between superconducting and normal conduction states by applying a control signal to a control terminal of the device. Critical-current suppression and device geometry are used to propagate a normal-conduction hotspot from a gate constriction across and along a portion of the main current-carrying channel. The three-terminal device may be used in various superconducting signal-processing circuitry.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: January 1, 2019
    Assignee: Massachusetts Institute of Technology
    Inventors: Adam N. McCaughan, Karl K. Berggren
  • Publication number: 20180090661
    Abstract: An active three-terminal superconducting device having an intersection region at which a hot spot may be controllably formed is described. The intersection region may exhibit current crowding in response to imbalances in current densities applied to channels connected to intersection region. The current crowding may form a hot spot, in which the superconducting device may exhibit a measurable resistance. In some cases, a three-terminal superconducting device may be configured to sense an amount of superconducting current flowing in a channel or loop without having to perturb the superconducting state or amount of current flowing in the channel. A three-terminal superconducting device may be used to read out a number of fluxons stored in a superconducting memory element.
    Type: Application
    Filed: April 1, 2016
    Publication date: March 29, 2018
    Applicant: MASSACHUSETTS INTITUTE OF TECHNOLOGY
    Inventors: Adam N. McCaughan, Karl K. Berggren, Qingyuan Zhao Zhao
  • Patent number: 9509315
    Abstract: A three-terminal device that exhibits transistor-like functionality at cryogenic temperatures may be formed from a single layer of superconducting material. A main current-carrying channel of the device may be toggled between superconducting and normal conduction states by applying a control signal to a control terminal of the device. Critical-current suppression and device geometry are used to propagate a normal-conduction hotspot from a gate constriction across and along a portion of the main current-carrying channel. The three-terminal device may be used in various superconducting signal-processing circuitry.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: November 29, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Adam N. McCaughan, Karl K. Berggren
  • Publication number: 20160028403
    Abstract: A three-terminal device that exhibits transistor-like functionality at cryogenic temperatures may be formed from a single layer of superconducting material. A main current-carrying channel of the device may be toggled between superconducting and normal conduction states by applying a control signal to a control terminal of the device. Critical-current suppression and device geometry are used to propagate a normal-conduction hotspot from a gate constriction across and along a portion of the main current-carrying channel. The three-terminal device may be used in various superconducting signal-processing circuitry.
    Type: Application
    Filed: March 11, 2014
    Publication date: January 28, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Adam N. McCaughan, Karl K. Berggren
  • Publication number: 20160028402
    Abstract: A three-terminal device that exhibits transistor-like functionality at cryogenic temperatures may be formed from a single layer of superconducting material. A main current-carrying channel of the device may be toggled between superconducting and normal conduction states by applying a control signal to a control terminal of the device. Critical-current suppression and device geometry are used to propagate a normal-conduction hotspot from a gate constriction across and along a portion of the main current-carrying channel. The three-terminal device may be used in various superconducting signal-processing circuitry.
    Type: Application
    Filed: March 11, 2014
    Publication date: January 28, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Adam N. McCaughan, Karl K. Berggren