Patents by Inventor Adam Ollanik
Adam Ollanik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11909352Abstract: A spectrum splitting, transmissive concentrating photovoltaic (tCPV) module is proposed and designed for a hybrid photovoltaic-solar thermal (PV/T) system. The system may be able to fully utilize the full spectrum of incoming sunlight. By utilizing III-V triple junction solar cells with bandgaps of approximately 2.1 eV, 1.7 eV, and 1.4 eV in the module, ultraviolet (UV) and visible light (in-band light) are absorbed and converted to electricity, while infrared (IR) light (out-of-band light) passes through and is captured by a solar thermal receiver and stored as heat. The stored heat energy may be dispatched as electricity or process heat as needed. The tCPV module may have an overall power conversion efficiency exceeding 43.5% for above bandgap (in-band) light under a standard AM1.5D solar spectrum with an average concentration ratio of 400 suns. Passive and/or active cooling methods may be used to keep cells below 110° C.Type: GrantFiled: March 28, 2017Date of Patent: February 20, 2024Assignee: THE ADMINISTRATORS OF THE TULANE EDUCATIONAL FUNDInventors: Matthew David Escarra, Qi Xu, Yaping Ji, Brian C. Riggs, Adam Ollanik, Kazi M. Islam, Daniel Codd, Vince Romanin, Nicholas David Farrar-Foley
-
Publication number: 20230344199Abstract: A confinement assembly configured for confining quantum objects is provided. The confinement assembly includes a first substrate having potential generating elements formed thereon; and may include a second substrate that is secured with respect to the first substrate. The confinement assembly further includes at least a portion of a laser (e.g., gain media and at least part of a resonant structure) formed on the first and/or second substrate. The potential generating elements are operable for generating confinement regions configured for confining the quantum objects. The confinement assembly at least partially defines an optical path for causing an optical beam to interact with the at least a portion of the laser. The optical beam is (a) a seeding laser beam configured to control at least one property of light emitted by the laser or (b) an optical pumping beam configured to power the lasing activity of the laser.Type: ApplicationFiled: April 13, 2023Publication date: October 26, 2023Inventors: Adam Ollanik, Matthew Bohn, Christopher Langer
-
Patent number: 11506602Abstract: A method for measuring a refractive index of a medium includes exciting a first antisymmetric resonance of a first metasurface, including a first periodic array of resonators formed on a substrate surface, with illumination incident on the first metasurface at a non-normal incidence angle with respect to the substrate surface, the first metasurface including the medium encapsulating the first periodic array of resonators. The method also includes determining a refractive index of the medium from a first amplitude of a first transmitted signal that includes a portion of the illumination transmitted through the first metasurface.Type: GrantFiled: May 13, 2019Date of Patent: November 22, 2022Assignee: THE ADMINISTRATORS OF THE TULANE EDUCATIONAL FUNDInventors: Matthew David Escarra, Adam Ollanik
-
Publication number: 20220327414Abstract: In various embodiments, a system comprising an atomic object confinement apparatus and one or more signal manipulation elements is provided. Each signal manipulation element (a) is associated with a respective atomic object position of the atomic object confinement apparatus and (b) is one of a collection array or an action array. A collection array is configured to, responsive to an emitted signal emitted by an atomic object at the respective atomic object position being incident on the collection array, provide an induced collection signal to a respective collection position. An action array is configured to, responsive to an incoming signal being incident on the action array, provide an induced action signal to the respective atomic object position. The one or more signal manipulation elements comprise metamaterial arrays and/or diffractive optical elements.Type: ApplicationFiled: March 8, 2022Publication date: October 13, 2022Inventors: Matthew Bohn, Adam Ollanik
-
Publication number: 20220128464Abstract: A method for measuring a refractive index of a medium includes exciting a first antisymmetric resonance of a first metasurface, including a first periodic array of resonators formed on a substrate surface, with illumination incident on the first metasurface at a non-normal incidence angle with respect to the substrate surface, the first metasurface including the medium encapsulating the first periodic array of resonators. The method also includes determining a refractive index of the medium from a first amplitude of a first transmitted signal that includes a portion of the illumination transmitted through the first metasurface.Type: ApplicationFiled: January 3, 2022Publication date: April 28, 2022Inventors: Matthew David ESCARRA, Adam OLLANIK
-
Patent number: 11121278Abstract: The use of photovoltaic (PV) cells to convert solar energy to electricity is becoming increasingly prevalent; however, there are still significant limitations associated with the widespread adoption of PV cells for electricity needs. There is a clear need for a high efficiency solar power system that supplies electricity at a competitive cost and that provides for an on-demand supply of electricity as well as energy storage. By combining aspects of concentrated solar power and concentrated photovoltaics, the present invention provides a device that enables the conversion of sunlight to electricity at very high efficiencies and that enables the transmission of thermal energy to heat storage devices for later use. The disclosed device enables transmissive CPV through the use of a multijunction PV cell mounted on a transparent base. The use of a multijunction cell allows for highly efficient absorption of light above the bandgap of the lowest bandgap subcell.Type: GrantFiled: June 29, 2015Date of Patent: September 14, 2021Assignee: THE ADMINISTRATORS OF THE TULANE EDUCATIONAL FUNDInventors: Matthew David Escarra, Benjamin Lewson, Yaping Ji, Qi Xu, Adam Ollanik
-
Publication number: 20210223170Abstract: A method for measuring a refractive index of a medium includes exciting a first antisymmetric resonance of a first metasurface, including a first periodic array of resonators formed on a substrate surface, with illumination incident on the first metasurface at a non-normal incidence angle with respect to the substrate surface, the first metasurface including the medium encapsulating the first periodic array of resonators. The method also includes determining a refractive index of the medium from a first amplitude of a first transmitted signal that includes a portion of the illumination transmitted through the first metasurface.Type: ApplicationFiled: May 13, 2019Publication date: July 22, 2021Inventors: Matthew David ESCARRA, Adam OLLANIK
-
Publication number: 20190115869Abstract: A spectrum splitting, transmissive concentrating photovoltaic (tCPV) module is proposed and designed for a hybrid photovoltaic-solar thermal (PV/T) system. The system may be able to fully utilize the full spectrum of incoming sunlight. By utilizing III-V triple junction solar cells with bandgaps of approximately 2.1 eV, 1.7 eV, and 1.4 eV in the module, ultraviolet (UV) and visible light (in-band light) are absorbed and converted to electricity, while infrared (IR) light (out-of-band light) passes through and is captured by a solar thermal receiver and stored as heat. The stored heat energy may be dispatched as electricity or process heat as needed. The tCPV module may have an overall power conversion efficiency exceeding 43.5% for above bandgap (in-band) light under a standard AM1.5D solar spectrum with an average concentration ratio of 400 suns. Passive and/or active cooling methods may be used to keep cells below 110° C.Type: ApplicationFiled: March 28, 2017Publication date: April 18, 2019Applicant: The Administrators of the Tulane Educational FundInventors: Matthew David Escarra, Qi Xy, Yaping Ji, Brian C. Riggs, Adam Ollanik, Kazi M. Islam, Daniel Codd, Vince Romanin, Nicholas David Farrar-Foley
-
Publication number: 20180212091Abstract: The use of photovoltaic (PV) cells to convert solar energy to electricity is becoming increasingly prevalent; however, there are still significant limitations associated with the widespread adoption of PV cells for electricity needs. There is a clear need for a high efficiency solar power system that supplies electricity at a competitive cost and that provides for an on-demand supply of electricity as well as energy storage. By combining aspects of concentrated solar power and concentrated photovoltaics, the present invention provides a device that enables the conversion of sunlight to electricity at very high efficiencies and that enables the transmission of thermal energy to heat storage devices for later use. The disclosed device enables transmissive CPV through the use of a multijunction PV cell mounted on a transparent base. The use of a multijunction cell allows for highly efficient absorption of light above the bandgap of the lowest bandgap subcell.Type: ApplicationFiled: June 29, 2015Publication date: July 26, 2018Applicant: The Administrators of the Tulane Educational FundInventors: Matthew David Escarra, Benjamin Lewson, Yaping Ji, Qi Xu, Adam Ollanik