Patents by Inventor Adam Parker Bry

Adam Parker Bry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230239575
    Abstract: In some examples, a computing device receives, from an unmanned aerial vehicle (UAV), a first image from a first camera on the UAV and a plurality of second images from a plurality of second cameras on the UAV. The plurality of second cameras may be positioned on the UAV for providing a plurality of different fields of view in a plurality of different directions around the UAV. Further, the first camera has a longer focal length than the second cameras. The computing device presents, on a display, a composite image including at least a portion of the first image within a merged image generated from the plurality of second images. The presented composite image enables a user to at least one of: zoom out from the at least one first image to the merged image, or zoom in from the merged image to the at least one first image.
    Type: Application
    Filed: March 17, 2023
    Publication date: July 27, 2023
    Inventors: Peter Benjamin HENRY, Hayk MARTIROSYAN, Abraham Galton BACHRACH, Clement GODARD, Adam Parker BRY, Ryan David KENNEDY
  • Publication number: 20230166862
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: August 30, 2022
    Publication date: June 1, 2023
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20230144408
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: July 26, 2022
    Publication date: May 11, 2023
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Patent number: 11644832
    Abstract: Methods and systems are described for new paradigms for user interaction with an unmanned aerial vehicle (referred to as a flying digital assistant or FDA) using a portable multifunction device (PMD) such as smart phone. In some embodiments, a user may control image capture from an FDA by adjusting the position and orientation of a PMD. In other embodiments, a user may input a touch gesture via a touch display of a PMD that corresponds with a flight path to be autonomously flown by the FDA.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: May 9, 2023
    Assignee: Skydio, Inc.
    Inventors: Abraham Galton Bachrach, Adam Parker Bry, Matthew Joseph Donahoe
  • Patent number: 11611700
    Abstract: In some examples, an unmanned aerial vehicle (UAV) may control a position of a first camera to cause the first camera to capture a first image of a target. The UAV may receive a plurality of second images from a plurality of second cameras, the plurality of second cameras positioned on the UAV for providing a plurality of different fields of view in a plurality of different directions around the UAV, the first camera having a longer focal length than the second cameras. The UAV may combine at least some of the plurality of second images to generate a composite image corresponding to the first image and having a wider-angle field of view than the first image. The UAV may send the first image and the composite image to a computing device.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: March 21, 2023
    Assignee: SKYDIO, INC.
    Inventors: Peter Benjamin Henry, Hayk Martirosyan, Abraham Galton Bachrach, Clement Godard, Adam Parker Bry, Ryan David Kennedy
  • Patent number: 11592845
    Abstract: An autonomous vehicle that is equipped with image capture devices can use information gathered from the image capture devices to plan a future three-dimensional (3D) trajectory through a physical environment. To this end, a technique is described for image-space based motion planning. In an embodiment, a planned 3D trajectory is projected into an image-space of an image captured by the autonomous vehicle. The planned 3D trajectory is then optimized according to a cost function derived from information (e.g., depth estimates) in the captured image. The cost function associates higher cost values with identified regions of the captured image that are associated with areas of the physical environment into which travel is risky or otherwise undesirable. The autonomous vehicle is thereby encouraged to avoid these areas while satisfying other motion planning objectives.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 28, 2023
    Assignee: Skydio, Inc.
    Inventors: Ryan David Kennedy, Peter Benjamin Henry, Hayk Martirosyan, Jack Louis Zhu, Abraham Galton Bachrach, Adam Parker Bry
  • Patent number: 11592844
    Abstract: An autonomous vehicle that is equipped with image capture devices can use information gathered from the image capture devices to plan a future three-dimensional (3D) trajectory through a physical environment. To this end, a technique is described for image-space based motion planning. In an embodiment, a planned 3D trajectory is projected into an image-space of an image captured by the autonomous vehicle. The planned 3D trajectory is then optimized according to a cost function derived from information (e.g., depth estimates) in the captured image. The cost function associates higher cost values with identified regions of the captured image that are associated with areas of the physical environment into which travel is risky or otherwise undesirable. The autonomous vehicle is thereby encouraged to avoid these areas while satisfying other motion planning objectives.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: February 28, 2023
    Assignee: Skydio, Inc.
    Inventors: Ryan David Kennedy, Peter Benjamin Henry, Hayk Martirosyan, Jack Louis Zhu, Abraham Galton Bachrach, Adam Parker Bry
  • Publication number: 20230002074
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: August 31, 2022
    Publication date: January 5, 2023
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20220411102
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: August 30, 2022
    Publication date: December 29, 2022
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20220411103
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: August 31, 2022
    Publication date: December 29, 2022
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20220404830
    Abstract: A technique is described for developing and using applications and skills with an autonomous vehicle. In an example embodiment, a development platform is provided that enables access to a developer console for developing software modules for use with an autonomous vehicle. Using the developer console, a developer user can specify instructions for causing an autonomous vehicle to perform one or more operations. For example, to control the behavior of an autonomous vehicle, the instructions can cause an executing computer system at the autonomous vehicle to generate calls to an application programming interface (API) associated with an autonomous navigation system of autonomous vehicle. Such calls to the API can be configured to adjust a parameter of a behavioral objective associated with a trajectory generation process performed by the autonomous navigation system that controls the behavior of the autonomous vehicle.
    Type: Application
    Filed: April 18, 2022
    Publication date: December 22, 2022
    Applicant: Skydio, Inc.
    Inventors: Roshan Neel Jobanputra, Jeffrey Robert DeCew, Matthew Joseph Donahoe, Mark Edward Rubin, Adam Parker Bry, Abraham Galton Bachrach, Jack Louis Zhu, Kristen Marie Holtz
  • Publication number: 20220390940
    Abstract: In some examples, a computing apparatus may include one or more non-transitory computer-readable storage media and program instructions stored on the one or more computer-readable storage media that, when executed by one or more processors, direct the computing apparatus to perform various steps. For example, the program instructions may continually present a graphical user interface (GUI) at the computing apparatus including a display of a current view of the physical environment from a perspective of an aerial vehicle. The program instructions may detect user interactions with the GUI while the aerial vehicle is in flight. The user interactions may include instructions directing the aerial vehicle to maneuver within the physical environment and configure parameters for scanning a three-dimensional (3D) scan volume. The program instruction may then transmit, to the aerial vehicle, data encoding the instructions for performing a 3D scan of the 3D scan volume.
    Type: Application
    Filed: June 2, 2022
    Publication date: December 8, 2022
    Inventors: Brian Richman, Matthew Thomas Beaudouin-Lafon, Charles VanSchoonhoven Wood, Peter Benjamin Henry, Jack Louis Zhu, Harrison Zheng, Hayk Martirosyan, Matthew Donahoe, Abraham Galton Bachrach, Adam Parker Bry
  • Publication number: 20220393561
    Abstract: An actuator is introduced that utilizes the forces that result from placing a current carrying coil in a magnetic field to rotate a connected object about at least one axis. In some embodiments, the introduced coil actuator includes a coil of conductor coupled to an arm or other type of structural element that extends radially from an axis of rotation. The introduced coil actuator can be utilized to provide motion control in a variety of different applications such as gimbal mechanisms. In some embodiments, the introduced coil actuator can be implemented in a gimbal mechanism for adjusting an orientation of a device such as a camera relative to a connected platform such as the body of an aerial vehicle.
    Type: Application
    Filed: July 27, 2022
    Publication date: December 8, 2022
    Applicant: Skydio, Inc.
    Inventors: Daniel Thomas Adams, Patrick Allen Lowe, Benjamin Scott Thompson, Abraham Galton Bachrach, Adam Parker Bry
  • Publication number: 20220374012
    Abstract: Sports and fitness applications for an autonomous unmanned aerial vehicle (UAV) are described. In an example embodiment, a UAV can be configured to track a human subject using perception inputs from one or more onboard sensors. The perception inputs can be utilized to generate values for various performance metrics associated with the activity of the human subject. In some embodiments, the perception inputs can be utilized to autonomously maneuver the UAV to lead the human subject to satisfy a performance goal. The UAV can also be configured to autonomously capture images of a sporting event and/or make rule determinations while officiating a sporting event.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 24, 2022
    Applicant: Skydio, Inc.
    Inventors: Abraham Galton Bachrach, Adam Parker Bry, Matthew Joseph Donahoe, Hayk Martirosyan, Tom Moss
  • Publication number: 20220374010
    Abstract: Methods and systems are described for new paradigms for user interaction with an unmanned aerial vehicle (referred to as a flying digital assistant or FDA) using a portable multifunction device (PMD) such as smart phone. In some embodiments, a user may control image capture from an FDA by adjusting the position and orientation of a PMD. In other embodiments, a user may input a touch gesture via a touch display of a PMD that corresponds with a flight path to be autonomously flown by the FDA.
    Type: Application
    Filed: May 27, 2022
    Publication date: November 24, 2022
    Applicant: Skydio, Inc.
    Inventors: Abraham Galton Bachrach, Adam Parker Bry, Matthew Joseph Donahoe
  • Publication number: 20220374013
    Abstract: Sports and fitness applications for an autonomous unmanned aerial vehicle (UAV) are described. In an example embodiment, a UAV can be configured to track a human subject using perception inputs from one or more onboard sensors. The perception inputs can be utilized to generate values for various performance metrics associated with the activity of the human subject. In some embodiments, the perception inputs can be utilized to autonomously maneuver the UAV to lead the human subject to satisfy a performance goal. The UAV can also be configured to autonomously capture images of a sporting event and/or make rule determinations while officiating a sporting event.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 24, 2022
    Applicant: Skydio, Inc.
    Inventors: Abraham Galton Bachrach, Adam Parker Bry, Matthew Joseph Donahoe, Hayk Martirosyan, Tom Moss
  • Publication number: 20220355952
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Application
    Filed: July 26, 2022
    Publication date: November 10, 2022
    Applicant: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey
  • Publication number: 20220315220
    Abstract: Autonomous aerial navigation in low-light and no-light conditions includes using night mode obstacle avoidance intelligence and mechanisms for vision-based unmanned aerial vehicle (UAV) navigation to enable autonomous flight operations of a UAV in low-light and no-light environments using infrared data.
    Type: Application
    Filed: October 19, 2021
    Publication date: October 6, 2022
    Inventors: Abraham Galton Bachrach, Adam Parker Bry, Gareth Benoit Cross, Peter Benjamin Henry, Kristen Marie Holtz, Ryan David Kennedy, Hayk Martirosyan, Vladimir Nekrasov, Samuel Shenghung Wang
  • Publication number: 20220309687
    Abstract: Systems and methods are disclosed for tracking objects in a physical environment using visual sensors onboard an autonomous unmanned aerial vehicle (UAV). In certain embodiments, images of the physical environment captured by the onboard visual sensors are processed to extract semantic information about detected objects. Processing of the captured images may involve applying machine learning techniques such as a deep convolutional neural network to extract semantic cues regarding objects detected in the images. The object tracking can be utilized, for example, to facilitate autonomous navigation by the UAV or to generate and display augmentative information regarding tracked objects to users.
    Type: Application
    Filed: April 4, 2022
    Publication date: September 29, 2022
    Applicant: Skydio, Inc.
    Inventors: Saumitro Dasgupta, Hayk Martirosyan, Hema Koppula, Alex Kendall, Austin Stone, Matthew Donahoe, Abraham Galton Bachrach, Adam Parker Bry
  • Patent number: 11453513
    Abstract: An introduced autonomous aerial vehicle can include multiple cameras for capturing images of a surrounding physical environment that are utilized for motion planning by an autonomous navigation system. In some embodiments, the cameras can be integrated into one or more rotor assemblies that house powered rotors to free up space within the body of the aerial vehicle. In an example embodiment, an aerial vehicle includes multiple upward-facing cameras and multiple downward-facing cameras with overlapping fields of view to enable stereoscopic computer vision in a plurality of directions around the aerial vehicle. Similar camera arrangements can also be implemented in fixed-wing aerial vehicles.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: September 27, 2022
    Assignee: Skydio, Inc.
    Inventors: Benjamin Scott Thompson, Adam Parker Bry, Asher Mendel Robbins-Rothman, Abraham Galton Bachrach, Yevgeniy Kozlenko, Kevin Patrick Smith O'Leary, Patrick Allen Lowe, Daniel Thomas Adams, Justin Michael Sadowski, Zachary Albert West, Josiah Timothy VanderMey