Patents by Inventor Adam R. Schofield

Adam R. Schofield has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8322213
    Abstract: A vibratory rate z-axis gyroscope is characterized by drive-mode and sense-mode quality factors and rate sensitivity and is fabricated with at least two decoupled vibratory tines, a levered drive-mode mechanism coupled between the tines to structurally force anti-phase drive-mode motion of the tines at a predetermined drive frequency, to eliminate spurious frequency modes of the anti-phase drive-mode motion of the tines lower than the predetermined drive frequency and to provide synchronization of drive- and sense-mode motion of the tines, and a sense-mode mechanism coupled between the tines arranged and configured to provide a linearly coupled, dynamically balanced anti-phase sense-mode motion of the tines to minimize substrate energy dissipation and to enhance the sense-mode quality factor and rate sensitivity.
    Type: Grant
    Filed: June 8, 2010
    Date of Patent: December 4, 2012
    Assignee: The Regents of the University of California
    Inventors: Alexander A. Trusov, Adam R. Schofield, Andrei M. Shkel
  • Patent number: 8113050
    Abstract: A method of operating an anti-phase six degree-of-freedom tuning fork gyroscope system comprises the steps of driving a first three degree-of-freedom gyroscope subsystem, and driving a second three degree-of freedom gyroscope subsystem in an anti-phase mode with the first gyroscope subsystem at an anti-phase resonant frequency. Acceleration or an angular rate of motion is sensed by the first and second three degree-of-freedom gyroscope subsystems operating in a flat frequency response range where the anti-phase resonant frequency is designed. Response gain and phase are stable and environmental and fabrication perturbations are avoided by such operation. A anti-phase six degree-of-freedom tuning fork gyroscope system which operates as described is also characterized.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: February 14, 2012
    Assignee: The Regents of the University of California
    Inventors: Cenk Acar, Andrei Shkel, Adam R. Schofield, Lynn E. Costlow, Asad M. Madni
  • Publication number: 20100313657
    Abstract: A vibratory rate z-axis gyroscope is characterized by drive-mode and sense-mode quality factors and rate sensitivity and is fabricated with at least two decoupled vibratory tines, a levered drive-mode mechanism coupled between the tines to structurally force anti-phase drive-mode motion of the tines at a predetermined drive frequency, to eliminate spurious frequency modes of the anti-phase drive-mode motion of the tines lower than the predetermined drive frequency and to provide synchronization of drive- and sense-mode motion of the tines, and a sense-mode mechanism coupled between the tines arranged and configured to provide a linearly coupled, dynamically balanced anti-phase sense-mode motion of the tines to minimize substrate energy dissipation and to enhance the sense-mode quality factor and rate sensitivity.
    Type: Application
    Filed: June 8, 2010
    Publication date: December 16, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Alexander A. Trusov, Adam R. Schofield, Andrei M. Shkel
  • Publication number: 20090272189
    Abstract: A method of operating an anti-phase six degree-of-freedom tuning fork gyroscope system comprises the steps of driving a first three degree-of-freedom gyroscope subsystem, and driving a second three degree-of freedom gyroscope subsystem in an anti-phase mode with the first gyroscope subsystem at an anti-phase resonant frequency. Acceleration or an angular rate of motion is sensed by means of the first and second three degree-of-freedom gyroscope subsystems operating in a flat frequency response range where the anti-phase resonant frequency is designed. Response gain and phase are stable and environmental and fabrication perturbations are avoided by such operation. A anti-phase six degree-of-freedom tuning fork gyroscope system which operates as described is also characterized.
    Type: Application
    Filed: January 25, 2006
    Publication date: November 5, 2009
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Cenk Acar, Andrei Shkel, Adam R. Schofield, Lynn E. Costlow, Asad M. Madni