Patents by Inventor Adam Schwartz

Adam Schwartz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9182432
    Abstract: A differential amplifier has an output and differential first and second inputs. A switch disposed between a sensor electrode and the second input is opened to initiate a reset phase where the sensor electrode and the differential amplifier are decoupled. A feedback capacitance disposed between the second input and the output is reset to a first level of charge. The switch is closed to initiate a measurement phase where the second input and sensor electrode are coupled. In the measurement phase: charge is balanced between the sensor electrode and the feedback capacitance such that a sensor electrode voltage equals a voltage of the first input equals a voltage of the second input, and the sensor electrode is charged; and the differential amplifier is utilized to integrate charge on the sensor electrode, such that an absolute capacitance corresponding to a coupling between the sensor electrode and an input object is measured.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 10, 2015
    Assignee: Synaptics Incorporated
    Inventors: Farzaneh Shahrokhi, Adam Schwartz, Shahrooz Shahparnia, Joseph Kurth Reynolds, Tracy Scott Dattalo
  • Patent number: 9176633
    Abstract: A processing system configured to sense an input object in a sensing region of a sensing device including a transmitter module coupled to a first transmitter electrode and a second transmitter electrode and configured to simultaneously apply a first transmitter signal to the first transmitter electrode and a second transmitter signal to the second transmitter electrode, wherein the first transmitter signal is based on a first one of a plurality of distinct codes and the second transmitter signal is based on a second one of the plurality of distinct codes. The processing system also includes a receiver module including receiver circuitry coupled to a first receiver electrode and configured to receive a first resulting signal with the first receiver electrode, the first resulting signal comprising effects corresponding to the first and second transmitter signals and a noise component.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: November 3, 2015
    Assignee: Synaptics Incorporated
    Inventors: Jeremy Roberson, Adam Schwartz
  • Publication number: 20150309658
    Abstract: In an example, a processing system for a capacitive sensing device includes a sensor module and a determination module. The sensor module includes sensor circuitry coupled to a plurality of transmitter electrodes and a plurality of receiver electrodes. The sensor module is configured to receive resulting signals from the plurality of receiver electrodes during a plurality of noise acquisition bursts while suspending transmission with the plurality of transmitter electrodes. The resulting signals include the effects of noise. The sensor module is further configured to introduce at least one time delay between a respective at least one pair of the plurality of noise acquisition bursts. The determination module is configured to determine an interference measurement for a first frequency based on the resulting signals.
    Type: Application
    Filed: September 30, 2014
    Publication date: October 29, 2015
    Inventors: Matthew STEVENSON, Adam SCHWARTZ, Joseph Kurth REYNOLDS
  • Publication number: 20150307258
    Abstract: A device for dispensing a material under pressure, including at least one elastic portion defining at least one wall of a chamber defining a volume within which said material is to be contained; and at least one non-elastic portion coupled to said at least one elastic portion and affecting a geometry of one or both of said elastic portion and of said chamber; wherein, at least when the material is contained within said chamber, said at least one elastic portion is stretched so as to urge a reduction in volume of said chamber by at least 70%. The non-elastic portion is optionally rigid.
    Type: Application
    Filed: January 16, 2014
    Publication date: October 29, 2015
    Inventors: Gadi HAR-SHAI, Adam SCHWARTZ
  • Publication number: 20150277621
    Abstract: A processing system configured to sense an input object in a sensing region of a sensing device including a transmitter module coupled to a first transmitter electrode and a second transmitter electrode and configured to simultaneously apply a first transmitter signal to the first transmitter electrode and a second transmitter signal to the second transmitter electrode, wherein the first transmitter signal is based on a first one of a plurality of distinct codes and the second transmitter signal is based on a second one of the plurality of distinct codes. The processing system also includes a receiver module including receiver circuitry coupled to a first receiver electrode and configured to receive a first resulting signal with the first receiver electrode, the first resulting signal comprising effects corresponding to the first and second transmitter signals and a noise component.
    Type: Application
    Filed: March 31, 2014
    Publication date: October 1, 2015
    Inventors: Jeremy Roberson, Adam Schwartz
  • Publication number: 20150261341
    Abstract: A processing system comprises a sensor module and a determination module. The sensor module is configured to drive a modulated signal on to a sensor electrode to achieve a target voltage on the sensor electrode during a first portion of a sensing cycle, wherein the modulated signal comprises a first voltage that is beyond a level of the target voltage and which is driven for a first period of time and a second voltage that is at the target voltage and which is driven for a second period of time that follows the first period of time. The determination module is configured to determine an absolute capacitance of the sensor electrode during the first portion of the sensing cycle after driving the second voltage.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 17, 2015
    Applicant: Synaptics Incorporated
    Inventors: John WEINERTH, Adam SCHWARTZ
  • Publication number: 20150248183
    Abstract: This disclosure generally provides an input device that includes a multi-layered capacitive sensor which includes a first layer disposed over a second layer that contains a plurality of sensor electrodes coupled to respective traces. The first and second layers form a capacitive sensing stack where the first layer is between the second layer and a touch surface for interacting with the input object. The first and second layers may be disposed on either the same substrate or different substrates in the stack. In one embodiment, the first layer includes electrically floating electrodes and at least one guard electrode. These components may align with respective components in the second layer. For example, the electrically floating electrodes in the first layer may at least partially cover the sensor electrodes in the second layer.
    Type: Application
    Filed: February 26, 2015
    Publication date: September 3, 2015
    Inventors: Adam SCHWARTZ, Joseph Kurth REYNOLDS, Bob Lee MACKEY, Petr SHEPELEV
  • Publication number: 20150227255
    Abstract: The embodiments described herein thus provide devices and methods that facilitate improved input devices. Specifically, the devices, systems and methods provide the ability to accurately determine user input using multiple different sensing regimes. The different sensing regimes can be used to facilitate accurate position determination of objects both at the surface and away from the surface. For example, the different sensing regimes can be used to determine position information for both ungloved and gloved fingers. In one embodiment the first sensing regime uses a first duty cycle of absolute capacitive sensing and a first duty cycle of transcapacitive sensing. The second sensing regime uses a second duty cycle of absolute capacitive sensing and a second duty cycle of transcapacitive sensing, where the second duty cycle of absolute capacitive sensing is greater than the first duty cycle of absolute capacitive sensing.
    Type: Application
    Filed: April 6, 2015
    Publication date: August 13, 2015
    Inventors: Adam Schwartz, Joel Jordan, Tom Vandermeijden, Petr Shepelev
  • Publication number: 20150227229
    Abstract: Embodiments in the present disclosure use various individual electrodes in a capacitive sensing pixel of an electrode matrix to perform two different techniques of capacitive sensing. For example, a capacitive sensing pixel may include at least two sensor electrodes that may be driven different by a processing system depending on the current capacitive technique being used to user interaction. When performing absolute capacitive sensing, a first one of the sensor electrodes may be driven with a modulated signal in order to measure a change in absolute capacitance between the driven sensor electrode and an input object. Alternatively, when performing transcapacitance sensing, the first sensor electrode is driven with a transmitter signal while a resulting signal is measured on a second sensor electrode in the capacitive pixel. In this manner, the individual electrodes in a capacitive sensing pixel may be driven differently depending on the current capacitive sensing technique.
    Type: Application
    Filed: February 11, 2014
    Publication date: August 13, 2015
    Applicant: SYNAPTICS INCORPORATED
    Inventors: Adam SCHWARTZ, Petr SHEPELEV
  • Publication number: 20150185926
    Abstract: Embodiments of the invention generally provide an input device with display screens that periodically update (refresh) the screen by selectively driving common electrodes corresponding to pixels in a display line. In general, the input devices drive each electrode until each display line (and each pixel) of a display frame is updated. In addition to updating the display, the input device may perform capacitive sensing using the display screen as a proximity sensing area. To do this, the input device may interleave periods of capacitive sensing between periods of updating the display based on a display frame. For example, the input device may update the first half of display lines of the display screen, pause display updating, perform capacitive sensing, and finish updating the rest of the display lines. Further still, the input device may use common electrodes for both updating the display and performing capacitive sensing.
    Type: Application
    Filed: March 6, 2015
    Publication date: July 2, 2015
    Inventors: Petr SHEPELEV, Adam SCHWARTZ
  • Publication number: 20150177887
    Abstract: Embodiments of the invention generally provide a method and apparatus that is configured to reduce the effects of interference that is undesirably provided to a transmitter signal that is delivered from a transmitter signal generating device to a sensor processor to determine if an input object is disposed within a touch sensing region of a touch sensing device. In one embodiment, the sensor processor includes a receiver channel that has circuitry that is configured to separately receive a transmitter signal delivered from a display processor and a sensor processor reference signal that is based on a display processor reference signal to reliably sense the presence of an object. Embodiments of the invention described herein thus provide an improved apparatus and method for reliably sensing the presence of an object by a touch sensing device.
    Type: Application
    Filed: February 16, 2015
    Publication date: June 25, 2015
    Inventors: Adam SCHWARTZ, Joseph Kurth REYNOLDS
  • Patent number: 9063608
    Abstract: A processing system for an input device includes a transmitter modules coupled to a plurality of transmitter electrodes including a first set and a second set of transmitter electrodes, the first set and second set being disjoint and having different sizes. The transmitter module is configured to simultaneously transmit a first plurality of transmitter signals with the first set of transmitter electrodes during a first period, and to simultaneously transmit a second plurality of transmitter signals with the second set of transmitter electrodes during a second period, wherein the first period and the second period are non-overlapping. Each of the first plurality of transmitter signals is based on a different sequence of a code, which includes a set of mathematically independent sequences and has a size equal to the size of the first set of transmitter electrodes.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: June 23, 2015
    Assignee: Synaptics Incorporated
    Inventors: Jeremy Roberson, Adam Schwartz
  • Patent number: 9057653
    Abstract: Devices and methods are provided that utilize a first electrode disposed on a first substrate and a second electrode disposed on a second substrate, where the first electrode and the second electrode define at least part of a variable capacitance. A third substrate is arranged between the first substrate and the second substrate, the third substrate having an opening arranged such that at least a portion of the first electrode and the second electrode overlap the opening. A transmission element is provided that partially overlaps the opening. The transmission element is physically coupled to the second electrode such that a force biasing the transmission element causes the second electrode to deflect relative to the first electrode, thus changing the variable capacitance. A measurement of the variable capacitance may then be used to determine force information.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: June 16, 2015
    Assignee: Synaptics Incorporated
    Inventors: Richard R. Schediwy, Robert J. Bolender, Adam Schwartz, Fritz Norby, Shawn P. Day
  • Patent number: 9046977
    Abstract: Methods, systems and devices are described for determining positional information for objects using an input device. The various embodiments provide improved user interface functionality by facilitating user input with input objects that are at the surface and objects that are away from the surface. The input device includes a processing system and an array of sensor electrodes adapted to capacitively sense objects in a sensing region. The processing system is configured to determine first positional information for an input object in a first portion of the sensing region based on a difference between a first frame of the first plurality of frames and a filtered frame even when the input object is determined to be in the sensing region when the first plurality of frames are acquired, wherein the filtered frame is based on one or more of the first plurality of frames.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: June 2, 2015
    Assignee: Synaptics Incorporated
    Inventors: Vijay Venkatesh Mahalingam, Adam Schwartz, Kathy Goudarzi, Tracy Scott Dattalo
  • Patent number: 9035906
    Abstract: A processing system for capacitance sensing includes a sensor module and a determination module. The sensor module includes sensor circuitry coupled to sensor electrodes, the sensor module configured to generate sensing signals received with the sensor electrodes. The determination module is connected to the sensor electrodes and configured to obtain, for a predetermined timeframe, a profile from the sensing signals, obtain, for the predetermined timeframe, a noise statistic, and calculate, for the predetermined timeframe, a data signal statistic for the predetermined timeframe using the profile. The determination module is further configured to calculate a signal to noise ratio (SNR) by dividing the data signal statistic by the noise statistic. When the SNR satisfies a predetermined detection threshold, an input object is detected in a sensing region of the capacitance sensing input device.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: May 19, 2015
    Assignee: Synaptics Incorporated
    Inventors: Curtis Elia, Adam Schwartz
  • Patent number: 9024643
    Abstract: The embodiments described herein thus provide devices and methods that facilitate improved input devices. Specifically, the devices, systems and methods provide the ability to accurately determine user input using multiple different sensing regimes. The different sensing regimes can be used to facilitate accurate position determination of objects both at the surface and away from the surface. For example, the different sensing regimes can be used to determine position information for both ungloved and gloved fingers. In one embodiment the first sensing regime uses a first duty cycle of absolute capacitive sensing and a first duty cycle of transcapacitive sensing. The second sensing regime uses a second duty cycle of absolute capacitive sensing and a second duty cycle of transcapacitive sensing, where the second duty cycle of absolute capacitive sensing is greater than the first duty cycle of absolute capacitive sensing.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: May 5, 2015
    Assignee: Synaptics Incorporated
    Inventors: Adam Schwartz, Joel Jordan, Tom R. Vandermeijden, Petr Shepelev
  • Publication number: 20150116253
    Abstract: A processing system for a capacitive input device includes functionality to perform a trans capacitance measurement of an array of sensor electrodes, determine a presence of at least one input object in the sensing region from the trans capacitance measurement, perform an absolute capacitive measurement along a first axis of the array of sensor electrodes, and suppress the determined presence of at least one input object based on a lack of a correlated input object presence from the absolute capacitive measurement along the first axis. The capacitive input device includes the array of sensor electrodes configured to sense input objects in a sensing region of the input device.
    Type: Application
    Filed: October 25, 2013
    Publication date: April 30, 2015
    Applicant: SYNAPTICS INCORPORATED
    Inventor: Adam Schwartz
  • Patent number: 9007336
    Abstract: Embodiments of the invention generally provide an input device with display screens that periodically update (refresh) the screen by selectively driving common electrodes corresponding to pixels in a display line. In general, the input devices drive each electrode until each display line (and each pixel) of a display frame is updated. In addition to updating the display, the input device may perform capacitive sensing using the display screen as a proximity sensing area. To do this, the input device may interleave periods of capacitive sensing between periods of updating the display based on a display frame. For example, the input device may update the first half of display lines of the display screen, pause display updating, perform capacitive sensing, and finish updating the rest of the display lines. Further still, the input device may use common electrodes for both updating the display and performing capacitive sensing.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: April 14, 2015
    Assignee: Synaptics Incorporated
    Inventors: Petr Shepelev, Adam Schwartz
  • Publication number: 20150091840
    Abstract: Embodiments of the present invention generally provide an input device comprising a display device integrated with a capacitive sensing device. The input device includes a plurality of transmitter electrodes, each transmitter electrode comprising one or more common electrodes configured to be driven for display updating and capacitive sensing, a plurality of near-field receiver electrodes configured to perform capacitive sensing in a near-field sensing region, and a plurality of far-field receiver electrodes configured to perform capacitive sensing in a far-field sensing region. The input device further includes a processing system coupled to the plurality of transmitter electrodes, the plurality of near-field receiver electrodes, and the plurality of far-field receiver electrodes.
    Type: Application
    Filed: September 27, 2013
    Publication date: April 2, 2015
    Applicant: SYNAPTICS INCORPORATED
    Inventors: Petr SHEPELEV, Adam SCHWARTZ
  • Publication number: 20150084876
    Abstract: In a method of capacitive sensing an absolute capacitive sensing signal is driven through at least one of a plurality of routing traces of a printed circuit. Absolute capacitive sensing is performed with at least one sensor electrode of a plurality of sensor electrodes in a sensor electrode pattern. The at least one sensor electrode is coupled with the at least one of the plurality of routing traces. An offsetting signal is transmitted on a parallel conductor overlapping the at least one of the plurality of routing traces, such that charge is offset from the at least one of the plurality of routing traces during the absolute capacitive sensing.
    Type: Application
    Filed: September 26, 2013
    Publication date: March 26, 2015
    Applicant: Synaptics Incorporated
    Inventor: Adam Schwartz