Patents by Inventor Adam Zhong

Adam Zhong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955618
    Abstract: A metal-air battery and methods for generating electricity in a metal-air battery are described herein. The battery and the method includes heating an anhydrous salt to obtain a molten salt electrolyte; contacting the molten salt electrolyte to at least one cathode communicating with air; reducing air at the cathode to obtain oxygen ions for diffusing through the molten salt electrolyte; oxidizing at least one metal anode by the oxygen ions in the electrolyte thereby generating electricity and forming a metal anode oxide; and cooling at least one section of the metal-air battery for precipitating the metal anode oxide.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: April 9, 2024
    Assignee: Worcester Polytechnic Institute
    Inventors: Adam C. Powell, Hongyi Sun, Mahya Shahabi, Yu Zhong
  • Publication number: 20240091808
    Abstract: Screening for screening a material includes: providing active mixing direct-ink-writing of the material, providing in situ characterization substrates or probes that receive the material, and providing active learning planning for screening the material. The providing active mixing direct-ink-writing of the material prints five to ten films. The providing in situ characterization substrates or probes includes printing five to ten films on the substrates or probes with a first set of constituents. The providing active learning planning for screening the material includes providing machine learning that takes the first set of constituents and uses the first set of constituents to dictate a next batch of films to achieve improved additional sets of constituents.
    Type: Application
    Filed: September 16, 2022
    Publication date: March 21, 2024
    Inventors: Johanna Jesse Schwartz, Marissa Wood, Jianchao Ye, Adam W. Jaycox, Xiaoting Zhong
  • Publication number: 20240096454
    Abstract: The present disclosure relates to systems and methods for screening a formulation of a material being printed in an additive manufacturing process, in situ, to enable rapid analysis, modeling and modification of at least one characteristic associated with the material formulation. In one embodiment the system includes a computer and an experimental planning software module that includes a historical database of sample material test results, a machine learning software module, and a new batch formulation generation software module. The experimental planning software module enables new material formulations to be determined in situ and in real time, using one or more machine learning models, and new material samples to be printed in accordance with newly determined material formulations, for closer inspection and evaluation of at least one desired characteristic of the sample materials.
    Type: Application
    Filed: September 15, 2023
    Publication date: March 21, 2024
    Inventors: Johanna Jesse SCHWARTZ, Marissa WOOD, Jianchao YE, Adam JAYCOX, Xiaoting ZHONG, Aldair GONGORA
  • Patent number: 11932802
    Abstract: Various shaped abrasive particles are disclosed. Each shaped abrasive particle includes a body having at least one major surface and a side surface extending from the major surface.
    Type: Grant
    Filed: December 2, 2022
    Date of Patent: March 19, 2024
    Assignee: SAINT-GOBAIN CERAMICS & PLASTICS, INC.
    Inventors: Todd M. Cotter, Francois Wagner, Rene G. Demers, Richard J. Klok, Alexandra Marazano, Adam D. Lior, James A. Salvatore, Sujatha K. Iyengar, David F Louapre, Sidath S. Wijesooriya, Ronald Christopher Motta, Gary A. Guertin, Michael D. Kavanaugh, Doruk O. Yener, Jennifer H. Czerepinski, Jun Jia, Frederic Josseaux, Ralph Bauer, Frank J. Csillag, Yang Zhong, James P. Stewart, Mark P. Dombrowski, Sandhya Jayaraman Rukmani, Amandine Martin, Stephen E. Fox, Nilanjan Sarangi, Dean S. Matsumoto
  • Patent number: 9343463
    Abstract: The structure and method of formation of an integrated CMOS level and active device level that can be a memory device level. The integration includes the formation of a “super-flat” interface between the two levels formed by the patterning of a full complement of active and dummy interconnecting vias using two separate patterning and etch processes. The active vias connect memory devices in the upper device level to connecting pads in the lower CMOS level. The dummy vias may extend up to an etch stop layer formed over the CMOS layer or may be stopped at an intermediate etch stop layer formed within the device level. The dummy vias thereby contact memory devices but do not connect them to active elements in the CMOS level.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: May 17, 2016
    Assignee: Headway Technologies, Inc.
    Inventors: Tom Zhong, Adam Zhong, Wai-Ming J. Kan, Chyu-Jiuh Torng
  • Patent number: 8324698
    Abstract: A STT-MRAM integration scheme is disclosed wherein the connection between a MTJ and CMOS metal is simplified by forming an intermediate via contact (VAC) on a CMOS landing pad, a metal (VAM) pad that contacts and covers the VAC, and a MTJ on the VAM. A dual damascene process is performed to connect BIT line metal to CMOS landing pads through VAC/VAM/MTJ stacks in a device region, and to connect BIT line connection pads to CMOS connection pads through BIT connection vias outside the device region. The VAM pad is a single layer or composite made of Ta, TaN, or other conductors which serves as a diffusion barrier, has a highly smooth surface for MTJ formation, and provides excellent selectivity with refill dielectric materials during a chemical mechanical polish process. Each VAC is from 500 to 3000 Angstroms thick to minimize additional circuit resistance and minimize etch burden.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: December 4, 2012
    Assignee: MagIC Technologies, Inc.
    Inventors: Tom Zhong, Chyu-Jiuh Torng, Rongfu Xiao, Adam Zhong, Wai-Ming Johnson Kan, Daniel Liu
  • Patent number: 8183061
    Abstract: A STT-MRAM integration scheme is disclosed wherein the connection between a MTJ and CMOS metal is simplified by forming an intermediate via contact (VAC) on a CMOS landing pad, a metal (VAM) pad that contacts and covers the VAC, and a MTJ on the VAM. A dual damascene process is performed to connect BIT line metal to CMOS landing pads through VAC/VAM/MTJ stacks in a device region, and to connect BIT line connection pads to CMOS connection pads through BIT connection vias outside the device region. The VAM pad is a single layer or composite made of Ta, TaN, or other conductors which serves as a diffusion barrier, has a highly smooth surface for MTJ formation, and provides excellent selectivity with refill dielectric materials during a chemical mechanical polish process. Each VAC is from 500 to 3000 Angstroms thick to minimize additional circuit resistance and minimize etch burden.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: May 22, 2012
    Assignee: MagIC Technologies, Inc.
    Inventors: Tom Zhong, Chyu-Jiuh Torng, Rongfu Xiao, Adam Zhong, Wai-Ming Johnson Kan, Daniel Liu
  • Patent number: 8133745
    Abstract: A method for forming a MTJ in a STT-MRAM is disclosed in which the easy-axis CD is determined independently of the hard-axis CD. One approach involves two photolithography steps and two etch steps to form a post in a hard mask which is transferred through a MTJ stack of layers by a third etch process. Optionally, the third etch may stop on the tunnel barrier or in the free layer. A second embodiment involves forming a first parallel line pattern on a hard mask layer and transferring the line pattern through the MTJ stack with a first etch step. A planar insulation layer is formed adjacent to the sidewalls in the line pattern and then a second parallel line pattern is formed which is transferred by a second etch through the MTJ stack to form a post pattern. Etch end point may be controlled independently for hard-axis and easy-axis dimensions.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: March 13, 2012
    Assignee: MagIC Technologies, Inc.
    Inventors: Tom Zhong, Rongfu Xiao, Chyu-Jiuh Torng, Adam Zhong
  • Patent number: 8105948
    Abstract: A process is described for making contact to the buried capping layers of GMR and MTJ devices without the need to form and fill via holes. CMP is applied to the structure in three steps: (1) conventional CMP (2) a Highly Selective Slurry (HSS) is substituted for the conventional slurry to just expose the capping layer, and (3) the HSS is diluted and used to clean the surface as well as to cause a slight protrusion of the capping layers above the surrounding dielectric surface, making it easier the contact them without damaging the devices below.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: January 31, 2012
    Assignee: MagIC Technologies, Inc.
    Inventors: Adam Zhong, Wai-Ming Kan, Tom Zhong, Chyu-Jiuh Torng
  • Publication number: 20110129946
    Abstract: A STT-MRAM integration scheme is disclosed wherein the connection between a MTJ and CMOS metal is simplified by forming an intermediate via contact (VAC) on a CMOS landing pad, a metal (VAM) pad that contacts and covers the VAC, and a MTJ on the VAM. A dual damascene process is performed to connect BIT line metal to CMOS landing pads through VAC/VAM/MTJ stacks in a device region, and to connect BIT line connection pads to CMOS connection pads through BIT connection vias outside the device region. The VAM pad is a single layer or composite made of Ta, TaN, or other conductors which serves as a diffusion barrier, has a highly smooth surface for MTJ formation, and provides excellent selectivity with refill dielectric materials during a chemical mechanical polish process. Each VAC is from 500 to 3000 Angstroms thick to minimize additional circuit resistance and minimize etch burden.
    Type: Application
    Filed: February 7, 2011
    Publication date: June 2, 2011
    Inventors: Tom Zhong, Chyu-Jiuh Torng, Rongfu Xiao, Adam Zhong, Wai-Ming Johnson Kan, Daniel Liu
  • Publication number: 20110101478
    Abstract: A STT-MRAM integration scheme is disclosed wherein the connection between a MTJ and CMOS metal is simplified by forming an intermediate via contact (VAC) on a CMOS landing pad, a metal (VAM) pad that contacts and covers the VAC, and a MTJ on the VAM. A dual damascene process is performed to connect BIT line metal to CMOS landing pads through VAC/VAM/MTJ stacks in a device region, and to connect BIT line connection pads to CMOS connection pads through BIT connection vias outside the device region. The VAM pad is a single layer or composite made of Ta, TaN, or other conductors which serves as a diffusion barrier, has a highly smooth surface for MTJ formation, and provides excellent selectivity with refill dielectric materials during a chemical mechanical polish process. Each VAC is from 500 to 3000 Angstroms thick to minimize additional circuit resistance and minimize etch burden.
    Type: Application
    Filed: January 4, 2011
    Publication date: May 5, 2011
    Inventors: Tom Zhong, Chyu-Jiuh Torng, Rongfu Xiao, Adam Zhong, Wai-Ming Johnson Kan, Daniel Liu
  • Patent number: 7919407
    Abstract: Described herein are novel, cost effective and scalable methods for integrating a CMOS level with a memory cell level to form a field induced MRAM device. The memory portion of the device includes N parallel word lines, which may be clad, overlaid by M parallel bit lines orthogonal to the word lines and individual patterned memory cells formed on previously patterned electrodes at the N×M intersections of the two sets of lines. The memory portion is integrated with a CMOS level and the connection between levels is facilitated by the formation of interconnecting vias between the N×M electrodes and corresponding pads in the CMOS level and by word line connection pads in the memory device level and corresponding metal pads in the CMOS level.
    Type: Grant
    Filed: November 17, 2009
    Date of Patent: April 5, 2011
    Assignee: MagIC Technologies, Inc.
    Inventors: Tom Zhong, Wai-Ming Johnson Kan, Daniel Liu, Adam Zhong, Chyu-Jiuh Torng
  • Publication number: 20110073917
    Abstract: The structure and method of formation of an integrated CMOS level and active device level that can be a memory device level. The integration includes the formation of a “super-flat” interface between the two levels formed by the patterning of a full complement of active and dummy interconnecting vias using two separate patterning and etch processes. The active vias connect memory devices in the upper device level to connecting pads in the lower CMOS level. The dummy vias may extend up to an etch stop layer formed over the CMOS layer or may be stopped at an intermediate etch stop layer formed within the device level. The dummy vias thereby contact memory devices but do not connect them to active elements in the CMOS level.
    Type: Application
    Filed: September 29, 2009
    Publication date: March 31, 2011
    Inventors: Tom Zhong, Adam Zhong, Wai-Ming J. Kan, Chyu-Jiuh Torng
  • Patent number: 7884433
    Abstract: A STT-MRAM integration scheme is disclosed wherein the connection between a MTJ and CMOS metal is simplified by forming an intermediate via contact (VAC) on a CMOS landing pad, a metal (VAM) pad that contacts and covers the VAC, and a MTJ on the VAM. A dual damascene process is performed to connect BIT line metal to CMOS landing pads through VAC/VAM/MTJ stacks in a device region, and to connect BIT line connection pads to CMOS connection pads through BIT connection vias outside the device region. The VAM pad is a single layer or composite made of Ta, TaN, or other conductors which serves as a diffusion barrier, has a highly smooth surface for MTJ formation, and provides excellent selectivity with refill dielectric materials during a chemical mechanical polish process. Each VAC is from 500 to 3000 Angstroms thick to minimize additional circuit resistance and minimize etch burden.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: February 8, 2011
    Assignee: MagIC Technologies, Inc.
    Inventors: Tom Zhong, Chyu-Jiuh Torng, Rongfu Xiao, Adam Zhong, Wai-Ming Johnson Kan, Daniel Liu
  • Publication number: 20100109106
    Abstract: A STT-MRAM integration scheme is disclosed wherein the connection between a MTJ and CMOS metal is simplified by forming an intermediate via contact (VAC) on a CMOS landing pad, a metal (VAM) pad that contacts and covers the VAC, and a MTJ on the VAM. A dual damascene process is performed to connect BIT line metal to CMOS landing pads through VAC/VAM/MTJ stacks in a device region, and to connect BIT line connection pads to CMOS connection pads through BIT connection vias outside the device region. The VAM pad is a single layer or composite made of Ta, TaN, or other conductors which serves as a diffusion barrier, has a highly smooth surface for MTJ formation, and provides excellent selectivity with refill dielectric materials during a chemical mechanical polish process. Each VAC is from 500 to 3000 Angstroms thick to minimize additional circuit resistance and minimize etch burden.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Inventors: Tom Zhong, Chyu-Jiuh Torng, Rongfu Xiao, Adam Zhong, Wai-Ming Johnson Kan, Daniel Liu
  • Publication number: 20090209102
    Abstract: A process is described for making contact to the buried capping layers of GMR and MTJ devices without the need to form and fill via holes. CMP is applied to the structure in three steps: (1) conventional CMP (2) a Highly Selective Slurry (HSS) is substituted for the conventional slurry to just expose the capping layer, and (3) the HSS is diluted and used to clean the surface as well as to cause a slight protrusion of the capping layers above the surrounding dielectric surface, making it easier the contact them without damaging the devices below.
    Type: Application
    Filed: February 14, 2008
    Publication date: August 20, 2009
    Inventors: Adam Zhong, Wai-Ming Kan, Tom Zhong, Chyu-Jiuh Torng
  • Publication number: 20090104718
    Abstract: A method for forming a MTJ in a STT-MRAM is disclosed in which the easy-axis CD is determined independently of the hard-axis CD. One approach involves two photolithography steps and two etch steps to form a post in a hard mask which is transferred through a MTJ stack of layers by a third etch process. Optionally, the third etch may stop on the tunnel barrier or in the free layer. A second embodiment involves forming a first parallel line pattern on a hard mask layer and transferring the line pattern through the MTJ stack with a first etch step. A planar insulation layer is formed adjacent to the sidewalls in the line pattern and then a second parallel line pattern is formed which is transferred by a second etch through the MTJ stack to form a post pattern. Etch end point may be controlled independently for hard-axis and easy-axis dimensions.
    Type: Application
    Filed: October 17, 2007
    Publication date: April 23, 2009
    Inventors: Tom Zhong, Rongfu Xiao, Chyu-Jiuh Torng, Adam Zhong
  • Publication number: 20090078927
    Abstract: A composite hard mask is disclosed that enables sub-100 nm sized MTJ cells to be formed for advanced devices such as spin torque MRAMs. The hard mask has a lower non-magnetic metallic layer such as Ru to magnetically isolate an overlying middle metallic spacer such as MnPt from an underlying free layer. The middle metallic spacer provides a height margin during subsequent processing to avoid shorting between a bit line and the MTJ cell in the final device. An upper conductive layer may be made of Ta and is thin enough to allow a MTJ pattern in a thin overlying photoresist layer to be transferred through the Ta during a fluorocarbon etch without consuming all of the photoresist. The MTJ pattern is transferred through the remaining hard mask layers and underlying MTJ stack of layers with a second etch step using a C, H, and O etch gas composition.
    Type: Application
    Filed: September 20, 2007
    Publication date: March 26, 2009
    Inventors: Rongfu Xiao, Chyu-Jiuh Torng, Tom Zhong, Witold Kula, Adam Zhong
  • Patent number: 7508700
    Abstract: An MTJ pattern layout for a memory device is disclosed that includes two CMP assist features outside active MTJ device blocks. A first plurality of dummy MTJ devices is located in two dummy bands formed around an active MTJ device block. The inner dummy band is separated from the outer dummy band by the MTJ ILD layer and has a MTJ device density essentially the same as the MTJ device block. The outer dummy band has a MTJ device density at least 10% greater than the inner dummy band. The inner dummy band serves to minimize CMP edge effect in the MTJ device block while the outer dummy band improves planarization. A second plurality of dummy MTJ devices is employed in contact pads outside the outer dummy band and is formed between a WL ILD layer and a BIT ILD layer thereby minimizing delamination of the MTJ ILD layer.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: March 24, 2009
    Assignee: Magic Technologies, Inc.
    Inventors: Tom Zhong, Terry Kin Ting Ko, Chyu-Jiuh Torng, Wai-Ming Kan, Adam Zhong
  • Publication number: 20080225576
    Abstract: An MTJ pattern layout for a memory device is disclosed that includes two CMP assist features outside active MTJ device blocks. A first plurality of dummy MTJ devices is located in two dummy bands formed around an active MTJ device block. The inner dummy band is separated from the outer dummy band by the MTJ ILD layer and has a MTJ device density essentially the same as the MTJ device block. The outer dummy band has a MTJ device density at least 10% greater than the inner dummy band. The inner dummy band serves to minimize CMP edge effect in the MTJ device block while the outer dummy band improves planarization. A second plurality of dummy MTJ devices is employed in contact pads outside the outer dummy band and is formed between a WL ILD layer and a BIT ILD layer thereby minimizing delamination of the MTJ ILD layer.
    Type: Application
    Filed: March 15, 2007
    Publication date: September 18, 2008
    Inventors: Tom Zhong, Terry Kin Ting Ko, Chyu-Jiuh Torng, Wai-Ming Kan, Adam Zhong