Patents by Inventor Adarsh Chauhan

Adarsh Chauhan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11656971
    Abstract: A processor comprises a microarchitectural feature and dynamic tuning unit (DTU) circuitry. The processor executes a program for first and second execution windows with the microarchitectural feature disabled and enabled, respectively. The DTU circuitry automatically determines whether the processor achieved worse performance in the second execution window. In response to determining that the processor achieved worse performance in the second execution window, the DTU circuitry updates a usefulness state for a selected address of the program to denote worse performance. In response to multiple consecutive determinations that the processor achieved worse performance with the microarchitectural feature enabled, the DTU circuitry automatically updates the usefulness state to denote a confirmed bad state.
    Type: Grant
    Filed: January 24, 2022
    Date of Patent: May 23, 2023
    Assignee: Intel Corporation
    Inventors: Adarsh Chauhan, Jayesh Gaur, Franck Sala, Lihu Rappoport, Zeev Sperber, Adi Yoaz, Sreenivas Subramoney
  • Patent number: 11645078
    Abstract: Systems, methods, and apparatuses relating to hardware for auto-predication of critical branches. In one embodiment, a processor core includes a decoder to decode instructions into decoded instructions, an execution unit to execute the decoded instructions, a branch predictor circuit to predict a future outcome of a branch instruction, and a branch predication manager circuit to disable use of the predicted future outcome for a conditional critical branch comprising the branch instruction.
    Type: Grant
    Filed: December 28, 2019
    Date of Patent: May 9, 2023
    Assignee: Intel Corporation
    Inventors: Adarsh Chauhan, Franck Sala, Jayesh Gaur, Zeev Sperber, Lihu Rappoport, Adi Yoaz, Sreenivas Subramoney
  • Publication number: 20220206925
    Abstract: A processor comprises a microarchitectural feature and dynamic tuning unit (DTU) circuitry. The processor executes a program for first and second execution windows with the microarchitectural feature disabled and enabled, respectively. The DTU circuitry automatically determines whether the processor achieved worse performance in the second execution window. In response to determining that the processor achieved worse performance in the second execution window, the DTU circuitry updates a usefulness state for a selected address of the program to denote worse performance. In response to multiple consecutive determinations that the processor achieved worse performance with the microarchitectural feature enabled, the DTU circuitry automatically updates the usefulness state to denote a confirmed bad state.
    Type: Application
    Filed: January 24, 2022
    Publication date: June 30, 2022
    Inventors: Adarsh Chauhan, Jayesh Gaur, Franck Sala, Lihu Rappoport, Zeev Sperber, Adi Yoaz, Sreenivas Subramoney
  • Publication number: 20220197659
    Abstract: Methods and apparatus relating to an Application Programming Interface (API) for fine grained low latency decompression within a processor core are described. In an embodiment, a decompression Application Programming Interface (API) receives an input handle to a data object. The data object includes compressed data and metadata. Decompression Engine (DE) circuitry decompresses the compressed data to generate uncompressed data. The DE circuitry decompress the compressed data in response to invocation of a decompression instruction by the decompression API. The metadata comprises a first operand to indicate a location of the compressed data, a second operand to indicate a size of the compressed data, a third operand to indicate a location to which decompressed data by the DE circuitry is to be stored, and a fourth operand to indicate a size of the decompressed data. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Jayesh Gaur, Adarsh Chauhan, Vinodh Gopal, Vedvyas Shanbhogue, Sreenivas Subramoney, Wajdi Feghali
  • Publication number: 20220197643
    Abstract: Methods and apparatus relating to speculative decompression within processor core caches are described. In an embodiment, decode circuitry decodes a decompression instruction into a first micro operation and a second micro operation. The first micro operation causes one or more load operations to fetch data into a plurality of cachelines of a cache of a processor core. Decompression Engine (DE) circuitry decompresses the fetched data from the plurality of cachelines of the cache of the processor core in response to the second micro operation. The decompression instruction causes the DE circuitry to perform an out-of-order decompression of the plurality of cachelines. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Jayesh Gaur, Adarsh Chauhan, Vinodh Gopal, Vedvyas Shanbhogue, Sreenivas Subramoney, Wajdi Feghali
  • Publication number: 20220197799
    Abstract: Methods and apparatus relating to an instruction and/or micro-architecture support for decompression on core are described. In an embodiment, decode circuitry decodes a decompression instruction into a first micro operation and a second micro operation. The first micro operation causes one or more load operations to fetch data into one or more cachelines of a cache of a processor core. Decompression Engine (DE) circuitry decompresses the fetched data from the one or more cachelines of the cache of the processor core in response to the second micro operation. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Jayesh Gaur, Adarsh Chauhan, Vinodh Gopal, Vedvyas Shanbhogue, Sreenivas Subramoney, Wajdi Feghali
  • Publication number: 20220197813
    Abstract: Methods and apparatus relating to techniques for increasing per core memory bandwidth by using forget store operations are described. In an embodiment, a cache stores a buffer. Execution circuitry executes an instruction. The instruction causes one or more cachelines in the cache to be marked based on a start address for the buffer and a size of the buffer. A marked cacheline in the cache is to be prevented from being written back to memory. Other embodiments are also disclosed and claimed.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Jayesh Gaur, Adarsh Chauhan, Vinodh Gopal, Vedvyas Shanbhogue, Sreenivas Subramoney, Wajdi Feghali
  • Patent number: 11256599
    Abstract: A processor comprises a microarchitectural feature and dynamic tuning unit (DTU) circuitry. The processor executes a program for first and second execution windows with the microarchitectural feature disabled and enabled, respectively. The DTU circuitry automatically determines whether the processor achieved worse performance in the second execution window. In response to determining that the processor achieved worse performance in the second execution window, the DTU circuitry updates a usefulness state for a selected address of the program to denote worse performance. In response to multiple consecutive determinations that the processor achieved worse performance with the microarchitectural feature enabled, the DTU circuitry automatically updates the usefulness state to denote a confirmed bad state.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: February 22, 2022
    Assignee: Intel Corporation
    Inventors: Adarsh Chauhan, Jayesh Gaur, Franck Sala, Lihu Rappoport, Zeev Sperber, Adi Yoaz, Sreenivas Subramoney
  • Publication number: 20210109839
    Abstract: A processor comprises a microarchitectural feature and dynamic tuning unit (DTU) circuitry. The processor executes a program for first and second execution windows with the microarchitectural feature disabled and enabled, respectively. The DTU circuitry automatically determines whether the processor achieved worse performance in the second execution window. In response to determining that the processor achieved worse performance in the second execution window, the DTU circuitry updates a usefulness state for a selected address of the program to denote worse performance. In response to multiple consecutive determinations that the processor achieved worse performance with the microarchitectural feature enabled, the DTU circuitry automatically updates the usefulness state to denote a confirmed bad state.
    Type: Application
    Filed: December 21, 2020
    Publication date: April 15, 2021
    Inventors: Adarsh Chauhan, Jayesh Gaur, Franck Sala, Lihu Rappoport, Zeev Sperber, Adi Yoaz, Sreenivas Subramoney
  • Patent number: 10915421
    Abstract: A processor comprises a microarchitectural feature and dynamic tuning unit (DTU) circuitry. The processor executes a program for first and second execution windows with the microarchitectural feature disabled and enabled, respectively. The DTU circuitry automatically determines whether the processor achieved worse performance in the second execution window. In response to determining that the processor achieved worse performance in the second execution window, the DTU circuitry updates a usefulness state for a selected address of the program to denote worse performance. In response to multiple consecutive determinations that the processor achieved worse performance with the microarchitectural feature enabled, the DTU circuitry automatically updates the usefulness state to denote a confirmed bad state.
    Type: Grant
    Filed: September 19, 2019
    Date of Patent: February 9, 2021
    Assignee: Intel Corporation
    Inventors: Adarsh Chauhan, Jayesh Gaur, Franck Sala, Lihu Rappoport, Zeev Sperber, Adi Yoaz, Sreenivas Subramoney
  • Publication number: 20210019149
    Abstract: Systems, methods, and apparatuses relating to hardware for auto-predication of critical branches. In one embodiment, a processor core includes a decoder to decode instructions into decoded instructions, an execution unit to execute the decoded instructions, a branch predictor circuit to predict a future outcome of a branch instruction, and a branch predication manager circuit to disable use of the predicted future outcome for a conditional critical branch comprising the branch instruction.
    Type: Application
    Filed: December 28, 2019
    Publication date: January 21, 2021
    Inventors: ADARSH CHAUHAN, Franck SALA, Jayesh GAUR, Zeev SPERBER, Lihu RAPPOPORT, Adi YOAZ, Sreenivas SUBRAMONEY
  • Patent number: 10754655
    Abstract: A processing device includes a branch IP table and branch predication circuitry coupled to the branch IP table. The branch predication circuitry to: determine a dynamic convergence point in a conditional branch of set of instructions; store the dynamic convergence point in the branch IP table; fetch a first and second speculative path of the conditional branch; while determining which of the first speculative path and the second speculative path is a taken path of the conditional branch and determining whether a dynamic convergence point is fetched corresponding to the stored dynamic convergence point, stall scheduling of instructions of the first speculative path and the second speculative path; and in response to determining that one of the first speculative path and the second speculative path is the taken path and the fetched dynamic convergence point corresponds to the stored convergence point, resume scheduling of the instructions of the taken path.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: August 25, 2020
    Assignee: Intel Corporation
    Inventors: Adarsh Chauhan, Hong Wang, Jayesh Gaur, Zeev Sperber, Sumeet Bandishte, Lihu Rappoport, Stanislav Shwartsman, Kamil Garifullin, Sreenivas Subramoney, Adi Yoaz
  • Publication number: 20200004542
    Abstract: A processing device includes a branch IP table and branch predication circuitry coupled to the branch IP table. The branch predication circuitry to: determine a dynamic convergence point in a conditional branch of set of instructions; store the dynamic convergence point in the branch IP table; fetch a first and second speculative path of the conditional branch; while determining which of the first speculative path and the second speculative path is a taken path of the conditional branch and determining whether a dynamic convergence point is fetched corresponding to the stored dynamic convergence point, stall scheduling of instructions of the first speculative path and the second speculative path; and in response to determining that one of the first speculative path and the second speculative path is the taken path and the fetched dynamic convergence point corresponds to the stored convergence point, resume scheduling of the instructions of the taken path.
    Type: Application
    Filed: June 28, 2018
    Publication date: January 2, 2020
    Inventors: Adarsh Chauhan, Jayesh Gaur, Zeev Sperber, Sumeet Bandishte, Lihu Rappoport, Stanislav Shwartsman, Kamil Garifullin, Sreenivas Subramoney, Adi Yoaz, Hong Wang