Patents by Inventor Adedunni D. Adeyemo

Adedunni D. Adeyemo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8114675
    Abstract: Described are CO sensors, methods for making the CO sensors, and methods for using the CO sensors. An exemplary CO sensor includes a ruthenium oxide present in a form having one or more surfaces, a pair of conductive electrodes operatively connected to a surface of the ruthenium oxide, and an electrical device operatively connected to the pair of conductive electrodes. The gas mixture contacts at least one surface of the ruthenium oxide during operation of the sensor and the electrical device applies a constant potential (or current) and measures a current (or potential) between the pair of conductive electrodes, from which a resistance can be derived as the gas mixture contacts at least one surface of the ruthenium oxide. The ruthenium oxide may have varying levels of hydration. Furthermore, the sensor operates at a temperature range of from about 25° C. to about 300° C.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: February 14, 2012
    Assignee: The Ohio State University Research Foundation
    Inventors: Prabir K. Dutta, Adedunni D. Adeyemo
  • Publication number: 20100255597
    Abstract: Described are CO sensors, methods for making the CO sensors, and methods for using the CO sensors. An exemplary CO sensor includes a ruthenium oxide present in a form having one or more surfaces, a pair of conductive electrodes operatively connected to a surface of the ruthenium oxide, and an electrical device operatively connected to the pair of conductive electrodes. The gas mixture contacts at least one surface of the ruthenium oxide during operation of the sensor and the electrical device applies a constant potential (or current) and measures a current (or potential) between the pair of conductive electrodes, from which a resistance can be derived as the gas mixture contacts at least one surface of the ruthenium oxide. The ruthenium oxide may have varying levels of hydration. Furthermore, the sensor operates at a temperature range of from about 25° C. to about 300° C.
    Type: Application
    Filed: March 30, 2010
    Publication date: October 7, 2010
    Applicant: THE OHIO STATE UNIVERSITY RESEARCH FOUNDATION
    Inventors: Prabir K. Dutta, Adedunni D. Adeyemo