Patents by Inventor Adel Joobeur

Adel Joobeur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11835752
    Abstract: A measurement apparatus, including: a tapered optical fiber, the tapered optical fiber having an input to receive radiation and having an output to provide spectrally broadened output radiation toward a measurement target, the tapered optical fiber configured to spectrally broaden the radiation received at the input; and a detector system configured to receive a redirected portion of the output radiation from the measurement target.
    Type: Grant
    Filed: October 9, 2020
    Date of Patent: December 5, 2023
    Assignee: ASML HOLDING N.V.
    Inventors: King Pui Leung, Tao Chen, Ronan James Havelin, Igor Matheus Petronella AARTS, Adel Joobeur, Joseph Carbone
  • Publication number: 20210033779
    Abstract: A measurement apparatus, including: a tapered optical fiber, the tapered optical fiber having an input to receive radiation and having an output to provide spectrally broadened output radiation toward a measurement target, the tapered optical fiber configured to spectrally broaden the radiation received at the input; and a detector system configured to receive a redirected portion of the output radiation from the measurement target.
    Type: Application
    Filed: October 9, 2020
    Publication date: February 4, 2021
    Applicant: ASML HOLDING N.V.
    Inventors: King Pui LEUNG, Tao CHEN, Ronan James HAVELIN, Igor Matheus Petronella AARTS, Adel JOOBEUR, Joseph CARBONE
  • Patent number: 10802208
    Abstract: A measurement apparatus, including: a tapered optical fiber, the tapered optical fiber having an input to receive radiation and having an output to provide spectrally broadened output radiation toward a measurement target, the tapered optical fiber configured to spectrally broaden the radiation received at the input; and a detector system configured to receive a redirected portion of the output radiation from the measurement target.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: October 13, 2020
    Assignee: ASML Holding N.V.
    Inventors: King Pui Leung, Tao Chen, Ronan James Havelin, Igor Matheus Petronella Aarts, Adel Joobeur, Joseph Carbone
  • Publication number: 20190154910
    Abstract: A measurement apparatus, including: a tapered optical fiber, the tapered optical fiber having an input to receive radiation and having an output to provide spectrally broadened output radiation toward a measurement target, the tapered optical fiber configured to spectrally broaden the radiation received at the input; and a detector system configured to receive a redirected portion of the output radiation from the measurement target.
    Type: Application
    Filed: March 17, 2017
    Publication date: May 23, 2019
    Applicant: ASML HOLDING N.V.
    Inventors: King Pui LEUNG, Tao CHEN, James Ronan HAVELIN, Igor Matheus Petronella AARTS, Adel JOOBEUR, Joseph CARBONE
  • Patent number: 9285687
    Abstract: An inspection apparatus includes an illumination system that receives a first beam and produces second and third beams from the first beam and a catadioptric objective that directs the second beam to reflect from a wafer. A first sensor detects a first image created by the reflected second beam. A refractive objective directs the third beam to reflect from the wafer, and a second sensor detects a second image created by the reflected third beam. The first and second images can be used for CD measurements. The second beam can have a spectral range from about 200 nm to about 425 nm, and the third beam can have a spectral range from about 425 nm to about 850 nm. A third sensor may be provide that detects a third image created by the third beam reflected from the wafer. The third image can be used for OV measurements.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: March 15, 2016
    Assignee: ASML Holding N.V.
    Inventors: Stanislav Y Smirnov, Lev Ryzhikov, Eric Brian Catey, Adel Joobeur, David Heald, Yevgeniy Konstantinovich Shmarev, Richard Jacobs
  • Patent number: 9046754
    Abstract: Disclosed are apparatuses, methods, and lithographic systems for EUV mask inspection. An EUV mask inspection system can include an EUV illumination source, an optical system, and an image sensor. The EUV illumination source can be a standalone illumination system or integrated into the lithographic system, where the EUV illumination source can be configured to illuminate an EUV radiation beam onto a target portion of a mask. The optical system can be configured to receive at least a portion of a reflected EUV radiation beam from the target portion of the mask. Further, the image sensor can be configured to detect an aerial image corresponding to the portion of the reflected EUV radiation beam. The EUV mask inspection system can also include a data analysis device configured to analyze the aerial image for mask defects.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: June 2, 2015
    Assignee: ASML Holding N.V.
    Inventors: Harry Sewell, Eric Brian Catey, Adel Joobeur, Yevgeniy Konstantinovich Shmarev
  • Patent number: 8982481
    Abstract: A system and method is described for correcting aberrations caused by field curvature with a catadioptric objective. In one example, a catadioptric optical system includes a first catadioptric element and a second catadioptric element. The first catadioptric element includes a first surface positioned to reflect a beam and a second surface positioned to focus the beam reflected by the first surface. The second catadioptric element is configured to receive the beam reflected by the second surface of the first catadioptric element. The second catadioptric element includes a third surface positioned to reflect the beam, and a fourth reflective surface positioned to focus the beam reflected by the third reflective surface. A curvature of the third or fourth surfaces of the second catadioptric element is chosen to apply a positive contribution to a field curvature associated with the first catadioptric element.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: March 17, 2015
    Assignee: ASML Holding N.V.
    Inventors: Stanislav Y. Smirnov, Adel Joobeur, Yevgeniy Konstantinovich Shmarev, Arun Mahadevan Venkataraman
  • Patent number: 8625199
    Abstract: A beam modifying unit increases both temporal pulse length and Etendue of an illumination beam. The pulse modifying unit receives an input pulse of radiation and emits one or more corresponding output pulses of radiation. A beam splitter divides the incoming pulse into a first and a second pulse portion, and directs the first pulse portion along a second optical path and the second portion along a first optical path as a portion of an output beam. The second optical path includes a divergence optical element. A first and a second mirror, each with a radius of curvature, are disposed facing each other with a predetermined separation, and receive the second pulse portion to redirect the second portion, such that the optical path of the second portion through the pulse modifier is longer than that of the first portion, and the separation is less than radius of curvature.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: January 7, 2014
    Assignees: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Adel Joobeur, Oscar Franciscus Jozephus Noordman, Paul Van Der Veen, Arun Mahadevan Venkataraman
  • Publication number: 20130083306
    Abstract: An inspection apparatus includes an illumination system that receives a first beam and produces second and third beams from the first beam and a catadioptric objective that directs the second beam to reflect from a wafer. A first sensor detects a first image created by the reflected second beam. A refractive objective directs the third beam to reflect from the wafer, and a second sensor detects a second image created by the reflected third beam. The first and second images can be used for CD measurements. The second beam can have a spectral range from about 200 nm to about 425 nm, and the third beam can have a spectral range from about 425 nm to about 850 nm. A third sensor may be provide that detects a third image created by the third beam reflected from the wafer. The third image can be used for OV measurements.
    Type: Application
    Filed: September 10, 2012
    Publication date: April 4, 2013
    Applicant: ASML Holding N. V.
    Inventors: Stanislav Y. Smirnov, Lev Ryzhikov, Eric Brian Catey, Adel Joobeur, David Heald, Yevgeniy Konstantinovich Shmarev, Richard Jacobs
  • Patent number: 8259398
    Abstract: Disclosed are high numerical (NA) catadioptric objectives without a central obscuration, and applications thereof. Such objectives can operate through a wide spectral bandwidth of radiation, including deep ultraviolet (DUV) radiation. Importantly, refractive elements in the catadioptric objectives can be manufactured from a single type of material (such as, for example, CaF2 and/or fused silica). In addition, the elements of such catadioptric objectives are rotationally symmetric about an optical axis. The catadioptric objectives eliminate the central obscuration by (1) using a polarized beamsplitter (which passes radiation of a first polarization and reflects radiation of a second polarization), and/or (2) using one or more folding mirrors to direct off-axis radiation into the pupil of the catadioptric objective. An example catadioptric objective is shown in FIG. 2.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: September 4, 2012
    Assignee: ASML Holding N.V.
    Inventors: Stanislav Y. Smirnov, Eric Brian Catey, Adel Joobeur
  • Patent number: 8164740
    Abstract: A coherence remover is provided. In an embodiment the coherence remover includes a first mirror and a second mirror coupled to the first mirror. The coherence remover is configured to receive an input beam. Each of the first and second mirrors is configured to reflect a respective portion of the input beam to produce respective one or more intermediate beams. The intermediate beams collectively form an output beam that has a reduced coherence compared to the input beam.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: April 24, 2012
    Assignees: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Huibert Visser, Jacob Fredrik Friso Klinkhamer, Lev Ryzhikov, Scott D. Coston, Adel Joobeur, Rob Vink, Yevgeniy Shmarev
  • Patent number: 8159651
    Abstract: A coherence remover includes a first partially reflective surface and a second partially reflective surface. The coherence remover is configured to receive an input beam. Each of the first and second reflective surfaces is configured to reflect a respective portion of the input beam to produce respective one or more intermediate beams. The intermediate beams collectively form an output beam that has a reduced coherence compared to the input beam.
    Type: Grant
    Filed: December 4, 2008
    Date of Patent: April 17, 2012
    Assignees: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Huibert Visser, Jacob Fredrik Friso Klinkhamer, Lev Ryzhikov, Scott D. Coston, Adel Joobeur, Rob Vink, Yevgeniy Shmarev
  • Publication number: 20120026607
    Abstract: Disclosed are high numerical (NA) catadioptric objectives without a central obscuration, and applications thereof. Such objectives can operate through a wide spectral bandwidth of radiation, including deep ultraviolet (DUV) radiation. Importantly, refractive elements in the catadioptric objectives can be manufactured from a single type of material (such as, for example, CaF2 and/or fused silica). In addition, the elements of such catadioptric objectives are rotationally symmetric about an optical axis. The catadioptric objectives eliminate the central obscuration by (1) using a polarized beamsplitter (which passes radiation of a first polarization and reflects radiation of a second polarization), and/or (2) using one or more folding mirrors to direct off-axis radiation into the pupil of the catadioptric objective. An example catadioptric objective is shown in FIG. 2.
    Type: Application
    Filed: October 6, 2011
    Publication date: February 2, 2012
    Applicant: ASML Holding N.V.
    Inventors: Stanislav Y. SMIRNOV, Eric Brian CATEY, Adel JOOBEUR
  • Patent number: 8064148
    Abstract: Disclosed are high numerical (NA) catadioptric objectives without a central obscuration, and applications thereof. Such objectives can operate through a wide spectral bandwidth of radiation, including deep ultraviolet (DUV) radiation. Importantly, refractive elements in the catadioptric objectives can be manufactured from a single type of material (such as, for example, CaF2 and/or fused silica). In addition, the elements of such catadioptric objectives are rotationally symmetric about an optical axis. The catadioptric objectives eliminate the central obscuration by (1) using a polarized beamsplitter (which passes radiation of a first polarization and reflects radiation of a second polarization), and/or (2) using one or more folding mirrors to direct off-axis radiation into the pupil of the catadioptric objective. An example catadioptric objective is shown in FIG. 2.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: November 22, 2011
    Assignee: ASML Holding N.V.
    Inventors: Stanislav Y. Smirnov, Eric Brian Catey, Adel Joobeur
  • Publication number: 20110255173
    Abstract: A beam modifying unit increases both temporal pulse length and Etendue of an illumination beam. The pulse modifying unit receives an input pulse of radiation and emits one or more corresponding output pulses of radiation. A beam splitter divides the incoming pulse into a first and a second pulse portion, and directs the first pulse portion along a second optical path and the second portion along a first optical path as a portion of an output beam. The second optical path includes a divergence optical element. A first and a second mirror, each with a radius of curvature, are disposed facing each other with a predetermined separation, and receive the second pulse portion to redirect the second portion, such that the optical path of the second portion through the pulse modifier is longer than that of the first portion, and the separation is less than radius of curvature.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 20, 2011
    Applicants: ASML Netherlands B.V., ASML Holding N.V.
    Inventors: Adel JOOBEUR, Oscar Franciscus Jozephus Noordman, Paul Van Der Veen, Arun Mahadevan Venkataraman
  • Patent number: 8004770
    Abstract: A beam modifying unit increases both temporal pulse length and Etendue of an illumination beam. The pulse modifying unit receives an input pulse of radiation and emits one or more corresponding output pulses of radiation. A beam splitter divides the incoming pulse into a first and a second pulse portion, and directs the first pulse portion along a second optical path and the second portion along a first optical path as a portion of an output beam. The second optical path includes a divergence optical element. A first and a second mirror, each with a radius of curvature, are disposed facing each other with a predetermined separation, and receive the second pulse portion to redirect the second portion, such that the optical path of the second portion through the pulse modifier is longer than that of the first portion, and the separation is less than radius of curvature.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: August 23, 2011
    Assignees: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Adel Joobeur, Oscar Franciscus Jozephus Noordman, Paul Van Der Veen, Arun Mahadevan Venkataraman
  • Patent number: 7852459
    Abstract: A scatterometer has a radiation source capable of emitting radiation in distinct first and second wavelength ranges. An adjustable optical element is provided to effect a chromatic correction as necessary according to which wavelength range is in use. A single scatterometer can thereby effect measurements using widely separated wavelengths.
    Type: Grant
    Filed: February 2, 2007
    Date of Patent: December 14, 2010
    Assignee: ASML Netherlands B.V.
    Inventors: Arie Jeffrey Den Boef, Stanislav Y. Smirnov, Adel Joobeur
  • Publication number: 20100163757
    Abstract: A beam modifying unit increases both temporal pulse length and Etendue of an illumination beam. The pulse modifying unit receives an input pulse of radiation and emits one or more corresponding output pulses of radiation. A beam splitter divides the incoming pulse into a first and a second pulse portion, and directs the first pulse portion along a second optical path and the second portion along a first optical path as a portion of an output beam. The second optical path includes a divergence optical element. A first and a second mirror, each with a radius of curvature, are disposed facing each other with a predetermined separation, and receive the second pulse portion to redirect the second portion, such that the optical path of the second portion through the pulse modifier is longer than that of the first portion, and the separation is less than radius of curvature.
    Type: Application
    Filed: November 10, 2009
    Publication date: July 1, 2010
    Applicants: ASML Holding N.V., ASML Netherlands B.V.
    Inventors: Adel Joobeur, Oscar Franciscue Jozephus Noordman, Paul Van der veen, Arun Mahadevan Venkataraman
  • Publication number: 20100149505
    Abstract: Disclosed are apparatuses, methods, and lithographic systems for EUV mask inspection. An EUV mask inspection system can include an EUV illumination source, an optical system, and an image sensor. The EUV illumination source can be a standalone illumination system or integrated into the lithographic system, where the EUV illumination source can be configured to illuminate an EUV radiation beam onto a target portion of a mask. The optical system can be configured to receive at least a portion of a reflected EUV radiation beam from the target portion of the mask. Further, the image sensor can be configured to detect an aerial image corresponding to the portion of the reflected EUV radiation beam. The EUV mask inspection system can also include a data analysis device configured to analyze the aerial image for mask defects.
    Type: Application
    Filed: October 26, 2009
    Publication date: June 17, 2010
    Applicant: ASML Holding N.V.
    Inventors: Harry SEWELL, Eric Brian Catey, Adel Joobeur, Yevgeniy Konstantinovich Shmarev
  • Publication number: 20090257053
    Abstract: Disclosed are high numerical (NA) catadioptric objectives without a central obscuration, and applications thereof. Such objectives can operate through a wide spectral bandwidth of radiation, including deep ultraviolet (DUV) radiation. Importantly, refractive elements in the catadioptric objectives can be manufactured from a single type of material (such as, for example, CaF2 and/or fused silica). In addition, the elements of such catadioptric objectives are rotationally symmetric about an optical axis. The catadioptric objectives eliminate the central obscuration by (1) using a polarized beamsplitter (which passes radiation of a first polarization and reflects radiation of a second polarization), and/or (2) using one or more folding mirrors to direct off-axis radiation into the pupil of the catadioptric objective. An example catadioptric objective is shown in FIG. 2.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 15, 2009
    Applicant: ASML Holding N.V.
    Inventors: Stanislav Y. SMIRNOV, Eric Brian CATEY, Adel JOOBEUR