Patents by Inventor Adele E. Schmitz

Adele E. Schmitz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7653985
    Abstract: Disclosed are methods for fabricating a micro-electro-mechanical switch. The switch has a cantilever arm disposed on a substrate that can be moved in orthogonal directions for latching and unlatching. For latching, the cantilever arm is moved back by a comb-drive actuator and then pulled down by electrodes disposed on the substrate and the cantilever arm. The comb-drive actuator switch is then released and the cantilever arm moves forward to be captured by a dove-tail structure on the substrate. When the voltage is removed, the cantilever arm is held in place by the dove-tail structure. The switch is unlatched by actuating the comb-drive actuator to move the cantilever arm away from the dove-tail structure. The cantilever arm will then pop up once it is released from the dove-tail structure.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: February 2, 2010
    Assignees: HRL Laboratories, LLC, Boeing
    Inventors: David T. Chang, James H. Schaffner, Tsung-Yuan Hsu, Adele E. Schmitz
  • Patent number: 7629194
    Abstract: Apparatus for a micro-electro-mechanical switch that provides single pole, double throw switching action. The switch has two input lines and two output lines. The switch has a seesaw cantilever arm with contacts at each end that electrically connect the input lines with the output lines. The cantilever arm is latched into position by frictional forces between structures on the cantilever arm and structures on the substrate in which the cantilever arm is disposed. The state of the switch is changed by applying an electrostatic force at one end of the cantilever arm to overcome the mechanical force holding the other end of the cantilever arm in place.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: December 8, 2009
    Assignee: HRL Laboratories, LLC
    Inventors: James H. Schaffner, Tsung-Yuan Hsu, Adele E. Schmitz, Hui-Pin Hsu
  • Patent number: 7348864
    Abstract: An integrated circuit module comprising integrated coupling transmission structures protruding from the main body of the integrated circuit with extra substrate material removed around and/or under the coupling transmission structures.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: March 25, 2008
    Assignee: HRL Laboratories, LLC
    Inventors: Debabani Choudhury, Adele E. Schmitz
  • Patent number: 7280015
    Abstract: Apparatus for a micro-electro-mechanical switch that provides single pole, double throw switching action. The switch has two input lines and two output lines. The switch has a seesaw cantilever arm with contacts at each end that electrically connect the input lines with the output lines. The cantilever arm is latched into position by frictional forces between structures on the cantilever arm and structures on the substrate in which the cantilever arm is disposed. The state of the switch is changed by applying an electrostatic force at one end of the cantilever arm to overcome the mechanical force holding the other end of the cantilever arm in place.
    Type: Grant
    Filed: December 6, 2004
    Date of Patent: October 9, 2007
    Assignee: HRL Laboratories, LLC
    Inventors: James H. Schaffner, Tsung-Yuan Hsu, Adele E. Schmitz, Hui-Pin Hsu
  • Patent number: 7253709
    Abstract: Apparatus for a micro-electro-mechanical switch that provides for latching switching action. The switch has a cantilever arm disposed on a substrate that can be moved in orthogonal directions for latching and unlatching. To latch the switch, the cantilever arm is moved back by a comb-drive actuator and then pulled down by electrodes disposed on the substrate and the cantilever arm. The comb-drive actuator switch is then released and the cantilever arm moves forward to be captured by a dove-tail structure on the substrate. When the voltage to the electrodes on the substrate and the cantilever arm is removed, the cantilever arm is held in place by the dove-tail structure. The switch is unlatched by actuating the comb-drive actuator to move the cantilever arm away from the dove-tail structure. The cantilever arm will then pop up once it is released from the dove-tail structure.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: August 7, 2007
    Assignee: HRL Laboratories, LLC
    Inventors: David T. Chang, James H. Schaffner, Tsung-Yuan Hsu, Adele E. Schmitz
  • Patent number: 7053737
    Abstract: A micro-electromechanical system (MEMS) switch formed on a substrate, the switch comprising a transmission line formed on the substrate, a substrate electrostatic plate formed on the substrate, and an actuating portion. The actuating portion comprises a cantilever anchor formed on the substrate and a cantilevered actuator arm extending from the cantilever anchor. Attraction of the actuator arm toward the substrate brings an electrical contact into engagement with the portions of the transmission line separated by a gap, thus bridging the transmission line gap and closing the circuit. In order to maximize electrical isolation between the transmission line and the electrical contact in an OFF-state while maintaining a low actuation voltage, the actuator arm is bent such that the minimum separation distance between the transmission line and the electrical contact is equal to or greater than the maximum separation distance between the substrate electrostatic plate and arm electrostatic plate.
    Type: Grant
    Filed: September 19, 2002
    Date of Patent: May 30, 2006
    Assignees: HRL Laboratories, LLC, The Regents of the University of California
    Inventors: Robert N. Schwartz, Ming Wu, Tsung-Yuan Hsu, Adele E. Schmitz, Robert Y. Loo, James H. Schaffner, Gregory L. Tangonan
  • Patent number: 6916720
    Abstract: A method for making a thin film device on integrated circuits including the steps of applying a first photoresist layer to a first surface, and patterning the first photoresist layer to have at least a first opening that exposes the first surface. A film is deposited onto the first photoresist layer, wherein a portion of the deposited film is deposited onto the exposed first surface. A second photoresist layer is applied onto the deposited layer, wherein the second photoresist layer is applied to the portion of the deposited film within the first opening and covers a second portion of the deposited layer, wherein the first photoresist layer and the second photoresist layer assist in the defining of the deposited layer. The deposited layer, first photoresist layer, and second photoresist layer are selectively removed, therein exposing the first surface and the second portion of the deposited layer.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: July 12, 2005
    Assignee: Hughes Electronics Corporation
    Inventors: Kursad Kiziloglu, Charles H. Fields, Adele E. Schmitz
  • Patent number: 6670921
    Abstract: A flexible antenna array comprises a plurality of layers of thin metal and a flexible insulating medium arranged as a sandwich of layers. Each layer of the sandwich is patterned as needed to define: (i) antenna segments patterned in one of the metal layers, (ii) an array of metallic top elements formed in a layer spaced from the the antenna segments, the array of metallic top elements being patterned in another metal layer, (iii) a metallic ground plane formed in a layer spaced from the array of metallic top elements, the metallic ground plane having been formed from still another metal layer, and (iv) inductive elements coupling each of the top elements in the array of metallic top elements with said ground plan. An array of remotely controlled switches are provided for coupling selected ones of said antenna segments together.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: December 30, 2003
    Assignees: HRL Laboratories, LLC, Raytheon Company
    Inventors: Daniel F. Sievenpiper, Adele E. Schmitz, James H. Schaffner, Gregory L. Tangonan, Tsung-Yuan Hsu, Robert Y. Loo, Robert S. Miles
  • Publication number: 20030058069
    Abstract: A micro-electromechanical system (MEMS) switch formed on a substrate, the switch comprising a transmission line formed on the substrate, a substrate electrostatic plate formed on the substrate, and an actuating portion. The actuating portion comprises a cantilever anchor formed on the substrate and a cantilevered actuator arm extending from the cantilever anchor. Attraction of the actuator arm toward the substrate brings an electrical contact into engagement with the portions of the transmission line separated by a gap, thus bridging the transmission line gap and closing the circuit. In order to maximize electrical isolation between the transmission line and the electrical contact in an OFF-state while maintaining a low actuation voltage, the actuator arm is bent such that the minimum separation distance between the transmission line and the electrical contact is equal to or greater than the maximum separation distance between the substrate electrostatic plate and arm electrostatic plate.
    Type: Application
    Filed: September 19, 2002
    Publication date: March 27, 2003
    Inventors: Robert N. Schwartz, Ming Wu, Tsung-Yuan Hsu, Adele E. Schmitz, Robert Y. Loo, James H. Schaffner, Gregory L. Tangonan
  • Publication number: 20030011518
    Abstract: A flexible antenna array comprises a plurality of layers of thin metal and a flexible insulating medium arranged as a sandwich of layers. Each layer of the sandwich is patterned as needed to define: (i) antenna segments patterned in one of the metal layers, (ii) an array of metallic top elements formed in a layer spaced from the the antenna segments, the array of metallic top elements being patterned in another metal layer, (iii) a metallic ground plane formed in a layer spaced from the array of metallic top elements, the metallic ground plane having been formed from still another metal layer, and (iv) inductive elements coupling each of the top elements in the array of metallic top elements with said ground plan. An array of remotely controlled switches are provided for coupling selected ones of said antenna segments together.
    Type: Application
    Filed: July 13, 2001
    Publication date: January 16, 2003
    Inventors: Daniel F. Sievenpiper, Adele E. Schmitz, James H. Schaffner, Gregory L. Tangonan, Tsung-Yuan Hsu, Robert Y. Loo, Robert S. Miles
  • Patent number: 6504235
    Abstract: A semiconductor passivation technique uses a plasma enhanced chemical vapor deposition (PECVD) process to produce a silicon-rich nitride film as a passivation layer on a Group III-V semiconductor device. The silicon-rich film has a nitrogen to silicon ratio of about 0.7, has a relatively high index of refraction of, for example, approximately 2.4, is compressively stressed, and is very low in hydrogen and oxygen content.
    Type: Grant
    Filed: June 6, 2001
    Date of Patent: January 7, 2003
    Assignee: Hughes Electronics Corporation
    Inventors: Adele E. Schmitz, Julia J. Brown
  • Publication number: 20020182818
    Abstract: A method for making a thin film device on integrated circuits including the steps of applying a first photoresist layer to a first surface, and patterning the first photoresist layer to have at least a first opening that exposes the first surface. A film is deposited onto the first photoresist layer, wherein a portion of the deposited film is deposited onto the exposed first surface. A second photoresist layer is applied onto the deposited layer, wherein the second photoresist layer is applied to the portion of the deposited film within the first opening and covers a second portion of the deposited layer, wherein the first photoresist layer and the second photoresist layer assist in the defining of the deposited layer. The deposited layer, first photoresist layer, and second photoresist layer are selectively removed, therein exposing the first surface and the second portion of the deposited layer.
    Type: Application
    Filed: July 5, 2002
    Publication date: December 5, 2002
    Inventors: Kursad Kiziloglu, Charles H. Fields, Adele E. Schmitz
  • Patent number: 6440767
    Abstract: Apparatus for a micro-electro-mechanical switch that provides single pole, double throw switching action. The switch comprises a single RF input line and two RF output lines. The switch additionally comprises two armatures, each mechanically connected to a substrate at one end and having a conducting transmission line at the other end with a suspended biasing electrode located on top of or within a structural layer of the armature. Each conducting transmission line has conducting dimples that protrude beyond the bottom of the armature carrying the conducting transmission line. Closure of an armature causes the dimples of the corresponding conducting transmission line to mechanically and electrically engage the RF input line and the corresponding RF output line, thus directing RF energy from the RF input line to the selected RF output line.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: August 27, 2002
    Assignee: HRL Laboratories, LLC
    Inventors: Robert Y. Loo, James H. Schaffner, Adele E. Schmitz, Tsung-Yuan Hsu, Franklin A. Dolezal, Gregory L. Tangonan
  • Publication number: 20020098613
    Abstract: Apparatus for a micro-electro-mechanical switch that provides single pole, double throw switching action. The switch comprises a single RF input line and two RF output lines. The switch additionally comprises two armatures, each mechanically connected to a substrate at one end and having a conducting transmission line at the other end with a suspended biasing electrode located on top of or within a structural layer of the armature. Each conducting transmission line has conducting dimples that protrude beyond the bottom of the armature carrying the conducting transmission line. Closure of an armature causes the dimples of the corresponding conducting transmission line to mechanically and electrically engage the RF input line and the corresponding RF output line, thus directing RF energy from the RF input line to the selected RF output line.
    Type: Application
    Filed: January 23, 2001
    Publication date: July 25, 2002
    Applicant: HRL Laboratories, LLC
    Inventors: Robert Y. Loo, James H. Schaffner, Adele E. Schmitz, Tsung-Yuan Hsu, Franklin A. Dolezal, Gregory L. Tangonan
  • Patent number: 6380552
    Abstract: A Schottky diode, and a method of making the same, which is fabricated on InP material and employs a Schottky layer including InxAl1−xAs with x>0.6, or else including a chirped graded supperlattice in which successive periods of the superlattice contain progressively less GaInAs and progressively more AlInAs, the increase in AlInAs being terminated before the proportion of AlInAs within the last period (adjacent the anode metal) exceeds 80%. Such fabrication creates an InP-based Schottky diode having a low turn-on voltage which may be predictably set within a range by adjusting the fabrication parameters.
    Type: Grant
    Filed: May 28, 1999
    Date of Patent: April 30, 2002
    Assignee: HRL Laboratories, LLC
    Inventors: Adele E. Schmitz, Robert H. Walden, Mark Lui, Mark K. Yu
  • Publication number: 20020000564
    Abstract: A Schottky diode, and a method of making the same, which is fabricated on InP material and a Schottky layer including InxAl1-xAs with x>0.6, or else including a chirped graded superlattice in which successive periods of the superlattice contain progressively less GaInAs and progressively more AlInAs, the increase in AlInAs being terminated before the proportion of AlInAs within the last period (adjacent the anode metal) exceeds 80%. Such fabrication creates an InP-based Schottky diode having a low turn-on voltage which may be predictably set within a range by adjusting the fabrication parameters.
    Type: Application
    Filed: May 28, 1999
    Publication date: January 3, 2002
    Inventors: ADELE E. SCHMITZ, ROBERT H. WALDEN, MARK LUI, MARK K. YU
  • Patent number: 6316342
    Abstract: A Schottky diode, and a method of making the same, which is fabricated on InP material and employs a Schottky layer including InxAl1−xAS with x>0.6, or else including a chirped graded superlattice in which successive periods of the superlattice contain progressively less GaInAs and progressively more AlInAs, the increase in AlInAs being terminated before the proportion of AlInAs within the last period (adjacent the anode metal) exceeds 80%.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: November 13, 2001
    Assignee: HRL Laboratories, LLC
    Inventors: Adele E. Schmitz, Robert H. Walden, Mark Lui, Mark K. Yu
  • Patent number: 6316820
    Abstract: A semiconductor passivation technique uses a plasma enhanced chemical vapor deposition (PECVD) process to produce a silicon-rich nitride film as a passivation layer on a Group III-V semiconductor device. The silicon-rich film has a nitrogen to silicon ratio of about 0.7, has a relatively high index of refraction of, for example, approximately 2.4, is compressively stressed, and is very low in hydrogen and oxygen content.
    Type: Grant
    Filed: August 28, 1998
    Date of Patent: November 13, 2001
    Assignee: Hughes Electronics Corporation
    Inventors: Adele E. Schmitz, Julia J. Brown
  • Publication number: 20010028100
    Abstract: A semiconductor passivation technique uses a plasma enhanced chemical vapor deposition (PECVD) process to produce a silicon-rich nitride film as a passivation layer on a Group III-V semiconductor device. The silicon-rich film has a nitrogen to silicon ratio of about 0.7, has a relatively high index of refraction of, for example, approximately 2.4, is compressively stressed, and is very low in hydrogen and oxygen content.
    Type: Application
    Filed: June 6, 2001
    Publication date: October 11, 2001
    Applicant: Hughes Electronics Corporation.
    Inventors: Adele E. Schmitz, Julia J. Brown
  • Patent number: 6228673
    Abstract: A photodetector is fabricated in a multilayer structure having a semi-insulating InP substrate, an n+ InP contact layer overlying the InP substrate, an undoped InGaAs absorbing layer overlying the n+ InP contact layer, and a p+ doped InGaAs layer overlying the undoped InGaAs absorbing layer. A gold-beryllium p-contact dot is deposited onto the p+ doped InGaAs layer of the multilayer structure. A mesa structure is etched with a citric acid-based etchant into the multilayer structure. The mesa structure includes the metal p-contact dot, the p+ doped InGaAs layer, and the undoped InGaAs absorbing layer. The n+ InP contact layer is patterned, and a passive metallic n-contact layer is deposited onto the patterned n+ InP contact layer. A polyimide insulator layer overlying a portion of the structure is deposited and patterned, so that the polyimide insulator layer does not cover the passive metal p-contact dot and the metallic n-contact layer.
    Type: Grant
    Filed: May 13, 1999
    Date of Patent: May 8, 2001
    Assignee: Hughes Electronics Corporation
    Inventors: Robert Y. Loo, Adele E. Schmitz, Julia J. Brown