Patents by Inventor Adi Ratan Bulsara

Adi Ratan Bulsara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11615318
    Abstract: A pattern recognition device comprising: a coupled network of damped, nonlinear, dynamic elements configured to generate an output response in response to at least one environmental condition, wherein each element has an associated multi-stable potential energy function that defines multiple energy states of an individual element, and wherein the elements are tuned such that environmental noise triggers stochastic resonance between energy levels of at least two elements; a processor configured to monitor the output response over time and to determine a probability that the pattern recognition device is in a given state based on the monitored output response; and detecting a pattern in the at least one environmental condition based on the probability.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: March 28, 2023
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Paul R. De La Houssaye, Benjamin J. Migliori, Adi Ratan Bulsara, Chriswell Hutchens, Justin M. Mauger
  • Patent number: 11510148
    Abstract: An autonomous sensor that includes a snap-through buckling beam, a proof mass, an ultra-low-power microcontroller unit, a wireless transmitter, a power management unit, and a power storage unit. The snap-through buckling beam produces mechanical energy. The proof mass is attached to the snap-through buckling beam. The proof mass transfers mechanical energy to two piezoelectric transducers that convert the mechanical energy into electrical energy and produce an output signal. The ultra-low-power microcontroller unit converts the output signal into output data. The wireless transmitter transfers the output data to an external device. The power management unit provides the electrical energy to the ultra-low-power microcontroller unit and the wireless transmitter. The power storage unit is rechargeable, stores electrical energy from the two piezoelectric transducers, and non-replaceable. The autonomous sensor simultaneously harvests energy and measures vibrations in an external environment.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: November 22, 2022
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Adi Ratan Bulsara, Bruno Ando, Salvatore Baglio, Vincenzo Marletta
  • Publication number: 20220174607
    Abstract: An autonomous sensor that includes a snap-through buckling beam, a proof mass, an ultra-low-power microcontroller unit, a wireless transmitter, a power management unit, and a power storage unit. The snap-through buckling beam produces mechanical energy. The proof mass is attached to the snap-through buckling beam. The proof mass transfers mechanical energy to two piezoelectric transducers that convert the mechanical energy into electrical energy and produce an output signal. The ultra-low-power microcontroller unit converts the output signal into output data. The wireless transmitter transfers the output data to an external device. The power management unit provides the electrical energy to the ultra-low-power microcontroller unit and the wireless transmitter. The power storage unit is rechargeable, stores electrical energy from the two piezoelectric transducers, and non-replaceable. The autonomous sensor simultaneously harvests energy and measures vibrations in an external environment.
    Type: Application
    Filed: December 1, 2020
    Publication date: June 2, 2022
    Applicant: THE UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE NAVY
    Inventors: Adi Ratan Bulsara, Bruno Ando, Salvatore Baglio, Vincenzo Marletta
  • Publication number: 20220051053
    Abstract: A pattern recognition device comprising: a coupled network of damped, nonlinear, dynamic elements configured to generate an output response in response to at least one environmental condition, wherein each element has an associated multi-stable potential energy function that defines multiple energy states of an individual element, and wherein the elements are tuned such that environmental noise triggers stochastic resonance between energy levels of at least two elements; a processor configured to monitor the output response over time and to determine a probability that the pattern recognition device is in a given state based on the monitored output response; and detecting a pattern in the at least one environmental condition based on the probability.
    Type: Application
    Filed: July 23, 2021
    Publication date: February 17, 2022
    Inventors: Paul R. De La Houssaye, Benjamin J. Migliori, Adi Ratan Bulsara, Chriswell Hutchens, Justin M. Mauger
  • Publication number: 20210256305
    Abstract: A pattern recognition device comprising: a coupled network of damped, nonlinear, dynamic elements configured to generate an output response in response to at least one environmental condition, wherein each element has an associated multi-stable potential energy function that defines multiple energy states of an individual element, and wherein the elements are tuned such that environmental noise triggers stochastic resonance between energy levels of at least two elements; a processor configured to monitor the output response over time and to determine a probability that the pattern recognition device is in a given state based on the monitored output response; and detecting a pattern in the at least one environmental condition based on the probability.
    Type: Application
    Filed: February 13, 2020
    Publication date: August 19, 2021
    Inventors: Paul R. De La Houssaye, Benjamin J. Migliori, Adi Ratan Bulsara, Chriswell Hutchens, Justin M. Mauger
  • Patent number: 11093794
    Abstract: A pattern recognition device comprising: a coupled network of damped, nonlinear, dynamic elements configured to generate an output response in response to at least one environmental condition, wherein each element has an associated multi-stable potential energy function that defines multiple energy states of an individual element, and wherein the elements are tuned such that environmental noise triggers stochastic resonance between energy levels of at least two elements; a processor configured to monitor the output response over time and to determine a probability that the pattern recognition device is in a given state based on the monitored output response; and detecting a pattern in the at least one environmental condition based on the probability.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: August 17, 2021
    Assignee: United States of America as represented by the Secretary of the Navy
    Inventors: Paul R. De La Houssaye, Benjamin J. Migliori, Adi Ratan Bulsara, Chriswell Hutchens, Justin M. Mauger
  • Patent number: 9470733
    Abstract: A sensor for detecting both magnetic fields and electric fields can include at least one Sawyer-Tower (ST) circuit that can incorporate a multiferroic capacitor. An odd number of ST circuits coupled together in a ring configuration, so that for each ST circuit, the output of one ST circuit is an input to another of the ST circuits. The multiferroic capacitors can include a multiferroic layer that can be deposed on a substrate. For each multiferroic capacitor, the deposition process can cause an inherent amount of impurities in the multiferroic layer. The number of said odd number of ST circuits to be coupled together is chosen according to the amount of impurities, to “forgive” the impurities. The higher the level of impurities in the multiferroic layers, that more ST circuits that are required in the ring to achieve the same sensor sensitivity. BDFO can be chosen for the multiferroic material.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: October 18, 2016
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventors: Salvatore Baglio, Bruno Ando, Adi Ratan Bulsara, Angela Beninato, Teresa Emery
  • Publication number: 20160139190
    Abstract: A sensor for detecting both magnetic fields and electric fields can include at least one Sawyer-Tower (ST) circuit that can incorporate a multiferroic capacitor. An odd number of ST circuits coupled together in a ring configuration, so that for each ST circuit, the output of one ST circuit is an input to another of the ST circuits. The multiferroic capacitors can include a multiferroic layer that can be deposed on a substrate. For each multiferroic capacitor, the deposition process can cause an inherent amount of impurities in the multiferroic layer. The number of said odd number of ST circuits to be coupled together is chosen according to the amount of impurities, to “forgive” the impurities. The higher the level of impurities in the multiferroic layers, that more ST circuits that are required in the ring to achieve the same sensor sensitivity. BDFO can be chosen for the multiferroic material.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 19, 2016
    Applicant: United States of America, as Represented by the Secretary of the Navy
    Inventors: Salvatore Baglio, Bruno Ando, Adi Ratan Bulsara, Angela Beninato, Teresa Emery
  • Patent number: 9140765
    Abstract: A nonlinear dynamic system comprising: a number N of nonlinear components, wherein each nonlinear component experiences intrinsic oscillation when a coupling parameter ? is tuned past a threshold value, and wherein the nonlinear components are unidirectionally coupled together in a ring configuration; and a signal generator configured to generate N coherent locking signals; wherein each locking signal is phase shifted by 2?/N with respect to the other locking signals; and wherein the signal generator is coupled to the nonlinear components such that each locking signal locks a frequency of the intrinsic oscillation of one of the nonlinear components to a frequency of the locking signal.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: September 22, 2015
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Adi Ratan Bulsara, Salvatore Baglio, Bruno Ando, Fabio Antoci, Carlo Trigona, Nigel Stocks, Alexander Nikitin