Patents by Inventor Aditya SISTA
Aditya SISTA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12211296Abstract: Certain aspects of the present disclosure provide techniques for automatically detecting and classifying tumor regions in a tissue slide. The method generally includes obtaining a digitized tissue slide from a tissue slide database and determining, based on output from a tissue classification module, a type of tissue of shown in the digitized tissue slide. The method further includes determining, based on output from a tumor classification model for the type of tissue, a region of interest (ROI) of the digitized tissue slide and generating a classified slide showing the ROI of the digitized tissue slide and an estimated diameter of the ROI. The method further includes displaying on an image display unit, the classified slide and user interface (UI) elements enabling a pathologist to enter input related to the classified slide.Type: GrantFiled: June 12, 2023Date of Patent: January 28, 2025Assignee: Applied Materials, Inc.Inventors: Parijat Prakash Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Sumit Kumar Jha, Aditya Sista, Narasimha Murthy Chandan
-
Publication number: 20230394853Abstract: Certain aspects of the present disclosure provide techniques for automatically detecting and classifying tumor regions in a tissue slide. The method generally includes obtaining a digitized tissue slide from a tissue slide database and determining, based on output from a tissue classification module, a type of tissue of shown in the digitized tissue slide. The method further includes determining, based on output from a tumor classification model for the type of tissue, a region of interest (ROI) of the digitized tissue slide and generating a classified slide showing the ROI of the digitized tissue slide and an estimated diameter of the ROI. The method further includes displaying on an image display unit, the classified slide and user interface (UI) elements enabling a pathologist to enter input related to the classified slide.Type: ApplicationFiled: June 12, 2023Publication date: December 7, 2023Inventors: Parijat Prakash PRABHUDESAI, Ganesh Kumar MOHANUR RAGHUNATHAN, Sumit Kumar JHA, Aditya SISTA, Narasimha Murthy CHANDAN
-
Patent number: 11694331Abstract: An imaging system includes a microscope to generate magnified images of regions of interest of a tissue sample, a camera to capture and store the magnified images, and a controller. The controller is configured to, for each magnification level in a sequence of increasing magnification levels, image one or more regions of interest of the tissue sample at the current magnification level. For each region of interest, data is generated defining one or more refined regions of interest based on the magnified image of the region of interest of the tissue sample at the current magnification level. Each refined region of interest corresponds to a proper subset of the tissue sample, and the refined regions of interest of the tissue sample provide the regions of interest to be imaged at a next magnification level from the sequence of increasing magnification levels.Type: GrantFiled: January 7, 2022Date of Patent: July 4, 2023Assignee: Applied Materials, Inc.Inventors: Parijat P. Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Aditya Sista, Sumit Kumar Jha, Narasimha Murthy Chandan
-
Patent number: 11688188Abstract: Certain aspects of the present disclosure provide techniques for automatically detecting and classifying tumor regions in a tissue slide. The method generally includes obtaining a digitized tissue slide from a tissue slide database and determining, based on output from a tissue classification module, a type of tissue of shown in the digitized tissue slide. The method further includes determining, based on output from a tumor classification model for the type of tissue, a region of interest (ROI) of the digitized tissue slide and generating a classified slide showing the ROI of the digitized tissue slide and an estimated diameter of the ROI. The method further includes displaying on an image display unit, the classified slide and user interface (UI) elements enabling a pathologist to enter input related to the classified slide.Type: GrantFiled: April 21, 2021Date of Patent: June 27, 2023Assignee: Applied Materials, Inc.Inventors: Parijat Prakash Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Sumit Kumar Jha, Aditya Sista, Narasimha Murthy Chandan
-
Patent number: 11663722Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to segment magnified images of tissue samples. The method includes obtaining a magnified image of a tissue sample; processing an input comprising: the image, features derived from the image, or both, in accordance with current values of model parameters of a machine learning model to generate an automatic segmentation of the image into a plurality of tissue classes; providing, to a user through a user interface, an indication of: (i) the image, and (ii) the automatic segmentation of the image; determining an edited segmentation of the image, comprising applying modifications specified by the user to the automatic segmentation of the image; and determining updated values of the model parameters of the machine learning model based the edited segmentation of the image.Type: GrantFiled: April 26, 2022Date of Patent: May 30, 2023Assignee: Applied Materials, Inc.Inventors: Sumit Kumar Jha, Aditya Sista, Ganesh Kumar Mohanur Raghunathan, Ubhay Kumar, Kedar Sapre
-
Publication number: 20220261992Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to segment magnified images of tissue samples. The method includes obtaining a magnified image of a tissue sample; processing an input comprising: the image, features derived from the image, or both, in accordance with current values of model parameters of a machine learning model to generate an automatic segmentation of the image into a plurality of tissue classes; providing, to a user through a user interface, an indication of: (i) the image, and (ii) the automatic segmentation of the image; determining an edited segmentation of the image, comprising applying modifications specified by the user to the automatic segmentation of the image; and determining updated values of the model parameters of the machine learning model based the edited segmentation of the image.Type: ApplicationFiled: April 26, 2022Publication date: August 18, 2022Inventors: Sumit Kumar Jha, Aditya Sista, Ganesh Kumar Mohanur Raghunathan, Ubhay Kumar, Kedar Sapre
-
Publication number: 20220164952Abstract: An imaging system includes a microscope to generate magnified images of regions of interest of a tissue sample, a camera to capture and store the magnified images, and a controller. The controller is configured to, for each magnification level in a sequence of increasing magnification levels, image one or more regions of interest of the tissue sample at the current magnification level. For each region of interest, data is generated defining one or more refined regions of interest based on the magnified image of the region of interest of the tissue sample at the current magnification level. Each refined region of interest corresponds to a proper subset of the tissue sample, and the refined regions of interest of the tissue sample provide the regions of interest to be imaged at a next magnification level from the sequence of increasing magnification levels.Type: ApplicationFiled: January 7, 2022Publication date: May 26, 2022Inventors: Parijat P. Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Aditya Sista, Sumit Kumar Jha, Narasimha Murthy Chandan
-
Patent number: 11321839Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to segment magnified images of tissue samples. The method includes obtaining a magnified image of a tissue sample; processing an input comprising: the image, features derived from the image, or both, in accordance with current values of model parameters of a machine learning model to generate an automatic segmentation of the image into a plurality of tissue classes; providing, to a user through a user interface, an indication of: (i) the image, and (ii) the automatic segmentation of the image; determining an edited segmentation of the image, comprising applying modifications specified by the user to the automatic segmentation of the image; and determining updated values of the model parameters of the machine learning model based the edited segmentation of the image.Type: GrantFiled: September 22, 2020Date of Patent: May 3, 2022Assignee: Applied Materials, Inc.Inventors: Sumit Kumar Jha, Aditya Sista, Ganesh Kumar Mohanur Raghunathan, Ubhay Kumar, Kedar Sapre
-
Patent number: 11232561Abstract: An imaging system includes a microscope to generate magnified images of regions of interest of a tissue sample, a camera to capture and store the magnified images, and a controller. The controller is configured to, for each magnification level in a sequence of increasing magnification levels, image one or more regions of interest of the tissue sample at the current magnification level. For each region of interest, data is generated defining one or more refined regions of interest based on the magnified image of the region of interest of the tissue sample at the current magnification level. Each refined region of interest corresponds to a proper subset of the tissue sample, and the refined regions of interest of the tissue sample provide the regions of interest to be imaged at a next magnification level from the sequence of increasing magnification levels.Type: GrantFiled: January 17, 2020Date of Patent: January 25, 2022Assignee: Applied Materials, Inc.Inventors: Parijat P. Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Aditya Sista, Sumit Kumar Jha, Narasimha Murthy Chandan
-
Publication number: 20210240966Abstract: Certain aspects of the present disclosure provide techniques for automatically detecting and classifying tumor regions in a tissue slide. The method generally includes obtaining a digitized tissue slide from a tissue slide database and determining, based on output from a tissue classification module, a type of tissue of shown in the digitized tissue slide. The method further includes determining, based on output from a tumor classification model for the type of tissue, a region of interest (ROI) of the digitized tissue slide and generating a classified slide showing the ROI of the digitized tissue slide and an estimated diameter of the ROI. The method further includes displaying on an image display unit, the classified slide and user interface (UI) elements enabling a pathologist to enter input related to the classified slide.Type: ApplicationFiled: April 21, 2021Publication date: August 5, 2021Inventors: Parijat Prakash PRABHUDESAI, Ganesh Kumar MOHANUR RAGHUNATHAN, Sumit Kumar JHA, Aditya SISTA, Narasimha Murthy CHANDAN
-
Patent number: 11017207Abstract: Certain aspects of the present disclosure provide techniques for automatically detecting and classifying tumor regions in a tissue slide. The method generally includes obtaining a digitized tissue slide from a tissue slide database and determining, based on output from a tissue classification module, a type of tissue of shown in the digitized tissue slide. The method further includes determining, based on output from a tumor classification model for the type of tissue, a region of interest (ROI) of the digitized tissue slide and generating a classified slide showing the ROI of the digitized tissue slide and an estimated diameter of the ROI. The method further includes displaying on an image display unit, the classified slide and user interface (UI) elements enabling a pathologist to enter input related to the classified slide.Type: GrantFiled: August 28, 2019Date of Patent: May 25, 2021Assignee: Applied Materials, Inc.Inventors: Parijat Prakash Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Sumit Kumar Jha, Aditya Sista, Narasimha Murthy Chandan
-
Publication number: 20210090251Abstract: Methods, systems, and apparatus, including computer programs encoded on a computer storage medium, for training a machine learning model to segment magnified images of tissue samples. The method includes obtaining a magnified image of a tissue sample; processing an input comprising: the image, features derived from the image, or both, in accordance with current values of model parameters of a machine learning model to generate an automatic segmentation of the image into a plurality of tissue classes; providing, to a user through a user interface, an indication of: (i) the image, and (ii) the automatic segmentation of the image; determining an edited segmentation of the image, comprising applying modifications specified by the user to the automatic segmentation of the image; and determining updated values of the model parameters of the machine learning model based the edited segmentation of the image.Type: ApplicationFiled: September 22, 2020Publication date: March 25, 2021Inventors: Sumit Kumar Jha, Aditya Sista, Ganesh Kumar Mohanur Raghunathan, Ubhay Kumar, Kedar Sapre
-
Publication number: 20200234441Abstract: An imaging system includes a microscope to generate magnified images of regions of interest of a tissue sample, a camera to capture and store the magnified images, and a controller. The controller is configured to, for each magnification level in a sequence of increasing magnification levels, image one or more regions of interest of the tissue sample at the current magnification level. For each region of interest, data is generated defining one or more refined regions of interest based on the magnified image of the region of interest of the tissue sample at the current magnification level. Each refined region of interest corresponds to a proper subset of the tissue sample, and the refined regions of interest of the tissue sample provide the regions of interest to be imaged at a next magnification level from the sequence of increasing magnification levels.Type: ApplicationFiled: January 17, 2020Publication date: July 23, 2020Inventors: Parijat P. Prabhudesai, Ganesh Kumar Mohanur Raghunathan, Aditya Sista, Sumit Kumar Jha, Narasimha Murthy Chandan
-
Publication number: 20200074146Abstract: Certain aspects of the present disclosure provide techniques for automatically detecting and classifying tumor regions in a tissue slide. The method generally includes obtaining a digitized tissue slide from a tissue slide database and determining, based on output from a tissue classification module, a type of tissue of shown in the digitized tissue slide. The method further includes determining, based on output from a tumor classification model for the type of tissue, a region of interest (ROI) of the digitized tissue slide and generating a classified slide showing the ROI of the digitized tissue slide and an estimated diameter of the ROI. The method further includes displaying on an image display unit, the classified slide and user interface (UI) elements enabling a pathologist to enter input related to the classified slide.Type: ApplicationFiled: August 28, 2019Publication date: March 5, 2020Inventors: Parijat Prakash PRABHUDESAI, Ganesh Kumar MOHANUR RAGHUNATHAN, Sumit Kumar JHA, Aditya SISTA, Narasimha Murthy CHANDAN