Patents by Inventor Adnan Ozekcin

Adnan Ozekcin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11883906
    Abstract: A metal cored wire for submerged arc welding, the wire comprising a steel sheath with a core comprising powders of: carbon in a range of about 0.3 wt. % to about 1.2 wt. %; silicon in a range of about 0.1 wt. % to about 3.0 wt. %; manganese in a range of about 9.0 wt. % to about 30 wt. %; chromium in an amount less than about 8 wt. %; nickel in an amount less than about 6 wt. %; molybdenum in an amount less than about 6 wt. %; tungsten in an amount less than about 5 wt. %; copper in an amount less than about 4 wt. %; niobium in an amount less than about 2 wt. %; vanadium in an amount less than about 2 wt. %; titanium in an amount less than about 2 wt. %; nitrogen in an amount less than about 0.4 wt. %; boron in an amount less than about 1 wt. %; at least one of: (i) sulfur in an amount less than about 0.3 wt. %; (ii) phosphorous in an amount less than about 0.03 wt. %; or a combination thereof; and the balance with iron.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: January 30, 2024
    Assignees: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY, POSCO
    Inventors: HyunWoo Jin, Ning Ma, Adnan Ozekcin, Andrew J. Wasson, Douglas P. Fairchild, IIWook Han, Sangchul Lee, Bongkeun Lee, Jongsub Lee
  • Publication number: 20230416884
    Abstract: The present disclosure relates to methods and compositions of linepipe steels that transport one or both of crude oil and natural gas. More particularly, the present disclosure relates sulfide stress cracking resistance of carbon steels for use as linepipe in transporting crude oil and natural gas by alternative carbon steel compositions comprising relatively low-manganese contents and/or low-carbon contents, alone or in combination with hydrogen trapping precipitates.
    Type: Application
    Filed: December 1, 2021
    Publication date: December 28, 2023
    Applicant: ExxonMobil Technology and Engineering Company
    Inventors: Neeraj THIRUMALAI, Hyun Jo JUN, Adnan OZEKCIN, Fang CAO
  • Publication number: 20230392224
    Abstract: The present disclosure relates to methods and treatments of linepipe steels that transport one or both of crude oil and natural gas. More particularly, the present disclosure relates to sulfide stress cracking resistance of carbon steels for use as linepipe in transporting crude oil and natural gas by alternative thermo-mechanically controlled and/or one or more additional heat treatment processes.
    Type: Application
    Filed: December 1, 2021
    Publication date: December 7, 2023
    Applicant: ExxonMobil Technology and Engineering Company
    Inventors: Neeraj S. THIRUMALAI, Hyun Jo JUN, Adnan OZEKCIN
  • Patent number: 11364705
    Abstract: A multi-layer friction reducing tape, including: a foil layer including a metal, polymer, or hybrid-metal-polymer; an under layer disposed on the foil layer; an adhesion promoting layer contiguous with a surface of the under layer; a functional layer that includes a fullerene based composite, a diamond based material, diamond-like-carbon (DLC), or combinations thereof, wherein the functional layer is contiguous with a surface of the adhesion promoting layer; and a tape, including an adhesive layer and a backing material, wherein the adhesive layer is attached to a surface of the foil layer opposite the under layer.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: June 21, 2022
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Lei Wang, Jeffrey R. Bailey, Srinivasan Rajagopalan, Adnan Ozekcin, Mehmet Deniz Ertas, Erika Biediger
  • Publication number: 20200086432
    Abstract: A metal cored wire for submerged arc welding, the wire comprising a steel sheath with a core comprising powders of: carbon in a range of about 0.3 wt. % to about 1.2 wt. %; silicon in a range of about 0.1 wt. % to about 3.0 wt. %; manganese in a range of about 9.0 wt. % to about 30 wt. %; chromium in an amount less than about 8 wt. %; nickel in an amount less than about 6 wt. %; molybdenum in an amount less than about 6 wt. %; tungsten in an amount less than about 5 wt. %; copper in an amount less than about 4 wt. %; niobium in an amount less than about 2 wt. %; vanadium in an amount less than about 2 wt. %; titanium in an amount less than about 2 wt. %; nitrogen in an amount less than about 0.4 wt. %; boron in an amount less than about 1 wt. %; at least one of: (i) sulfur in an amount less than about 0.3 wt. %; (ii) phosphorous in an amount less than about 0.03 wt. %; or a combination thereof; and the balance with iron.
    Type: Application
    Filed: November 4, 2019
    Publication date: March 19, 2020
    Inventors: HyunWoo Jin, Ning Ma, Adnan Ozekcin, Andrew J. Wasson, Douglas P. Fairchild, IIWook Han, Sangchul Lee, Bongkeun Lee, Jongsub Lee
  • Patent number: 10493570
    Abstract: Improved steel welds, article for making the same, and methods of making the same are provided. The present disclosure provides advantageous erosion, corrosion and/or cracking resistant weld metal. More particularly, the present disclosure provides high manganese (Mn) weld metal compositions having enhanced erosion, corrosion and/or cracking resistance, articles for the production of the high manganese weld metal compositions having enhanced erosion, corrosion, and/or cracking resistance, and methods for fabricating high manganese weld metal compositions having enhanced erosion, corrosion and/or cracking resistance.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: December 3, 2019
    Assignees: ExxonMobil Research and Engineering Company, POSCO
    Inventors: HyunWoo Jin, Ning Ma, Adnan Ozekcin, Andrew J. Wasson, Douglas P. Fairchild, IlWook Han, Sangchul Lee, Bongkeun Lee, Jongsub Lee
  • Publication number: 20190111661
    Abstract: A multi-layer friction reducing tape, including: a foil layer including a metal, polymer, or hybrid-metal-polymer; an under layer disposed on the foil layer; an adhesion promoting layer contiguous with a surface of the under layer; a functional layer that includes a fullerene based composite, a diamond based material, diamond-like-carbon (DLC), or combinations thereof, wherein the functional layer is contiguous with a surface of the adhesion promoting layer; and a tape, including an adhesive layer and a backing material, wherein the adhesive layer is attached to a surface of the foil layer opposite the under layer.
    Type: Application
    Filed: September 5, 2018
    Publication date: April 18, 2019
    Inventors: Lei Wang, Jeffrey R. Bailey, Srinivasan Rajagopalan, Adnan Ozekcin, Mehmet Deniz Ertas, Erika Biediger
  • Publication number: 20180169799
    Abstract: Weld metals and methods for welding ferritic steels are provided. The weld metals have high strength and high ductile tearing resistance and are suitable for use in strain based pipelines. The weld metals are comprised of between 0.03 and 0.08 wt % carbon, between 2.0 and 3.5 wt % nickel, not greater than about 2.0 wt % manganese, not greater than about 0.80 wt % molybdenum, not greater than about 0.70 wt % silicon, not greater than about 0.03 wt % aluminum, not greater than 0.02 wt % titanium, not greater than 0.04 wt % zirconium, between 100 and 225 ppm oxygen, not greater than about 100 ppm nitrogen, not greater than about 100 ppm sulfur, not greater than about 100 ppm phosphorus, and the balance essentially iron. The weld metals are applied using a power source with pulsed current waveform control with <5% CO2 and <2% oxygen in the shielding gas.
    Type: Application
    Filed: January 30, 2018
    Publication date: June 21, 2018
    Inventors: Douglas P. Fairchild, Mario L. Macia, Nathan E. Nissley, Raghavan Ayer, Hyun-Woo Jin, Adnan Ozekcin
  • Patent number: 9896748
    Abstract: A steel composition and method from making a dual phase steel therefrom. The dual phase steel may have carbon of about 0.05% by weight to about 0.12 wt %; niobium of about 0.005 wt % to about 0.03 wt %; titanium of about 0.005 wt % to about 0.02 wt %; nitrogen of about 0.001 wt % to about 0.01 wt %; silicon of about 0.01 wt % to about 0.5 wt %; manganese of about 0.5 wt % to about 2.0 wt %; and a total of molybdenum, chromium, vanadium and copper less than about 0.15 wt %. The steel may have a first phase consisting of ferrite and a second phase having one or more of carbide, pearlite, martensite, lower bainite, granular bainite, upper bainite, and degenerate upper bainite. A solute carbon content in the first phase may be about 0.01 wt % or less.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: February 20, 2018
    Assignee: Exxon Mobil Upstream Research Company
    Inventors: Jayoung Koo, Narasimha-Rao V. Bangaru, Swarupa Soma Bangaru, Hyun-Woo Jin, Adnan Ozekcin, Raghavan Ayer, Douglas P. Fairchild, Danny L. Beeson, Douglas S. Hoyt, James B. LeBleu, Jr., Shigeru Endo, Mitsuhiro Okatsu, Shinichi Kakihara, Moriyasu Nagae
  • Patent number: 9821401
    Abstract: Weld metals and methods for welding ferritic steels are provided. The weld metals have high strength and high ductile tearing resistance and are suitable for use in strain based pipelines. The weld metal contains retained austenite and has a cellular microstructure with cell walls containing lath martensite and cell interiors containing degenerate upper bainite. The weld metals are comprised of between 0.02 and 0.12 wt % carbon, between 7.50 and 14.50 wt % nickel, not greater than about 1.00 wt % manganese, not greater than about 0.30 wt % silicon, not greater than about 150 ppm oxygen, not greater than about 100 ppm sulfur, not greater than about 75 ppm phosphorus, and the balance essentially iron. Other elements may be added to enhance the properties of the weld metal. The weld metals are applied using a power source with current waveform control which produces a smooth, controlled welding arc and weld pool in the absence of CO2 or oxygen in the shielding gas.
    Type: Grant
    Filed: December 12, 2011
    Date of Patent: November 21, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Douglas P. Fairchild, Mario L. Macia, Steven J. Ford, Nathan E. Nissley, Raghavan Ayer, Hyun-Woo Jin, Adnan Ozekcin
  • Publication number: 20170312861
    Abstract: Improved steel welds, article for making the same, and methods of making the same are provided. The present disclosure provides advantageous erosion, corrosion and/or cracking resistant weld metal. More particularly, the present disclosure provides high manganese (Mn) weld metal compositions having enhanced erosion, corrosion and/or cracking resistance, articles for the production of the high manganese weld metal compositions having enhanced erosion, corrosion, and/or cracking resistance, and methods for fabricating high manganese weld metal compositions having enhanced erosion, corrosion and/or cracking resistance.
    Type: Application
    Filed: May 2, 2017
    Publication date: November 2, 2017
    Inventors: HyunWoo Jin, Ning Ma, Adnan Ozekcin, Andrew J. Wasson, Douglas P. Fairchild, IlWook Han, Sangchul Lee, Bongkeun Lee, Jongsub Lee
  • Patent number: 9617654
    Abstract: Provided are low friction coatings with improved abrasion, wear resistance and methods of making such coatings. In one form, the coating includes: i) an under layer selected from the group consisting of CrN, TiN, TiAlN, TiAlVN, TiAlVCN, TiSiN, TiSiCN, TiAlSiN and combinations thereof, wherein the under layer ranges in thickness from 0.1 to 100 ?m, ii) an adhesion promoting layer selected from the group consisting of Cr, Ti, Si, W, CrC, TiC, SiC, WC, and combinations thereof, wherein the adhesion promoting layer ranges in thickness from 0.1 to 50 ?m and is contiguous with a surface of the under layer, and iii) a functional layer selected from the group consisting of a fullerene based composite, a diamond based material, diamond-like-carbon and combinations thereof, wherein the functional layer ranges from 0.1 to 50 ?m and is contiguous with a surface of the adhesion promoting layer.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 11, 2017
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Srinivasan Rajagopalan, Tabassumul Haque, Mehmet Deniz Ertas, Adnan Ozekcin, HyunWoo Jin, Bo Zhao
  • Publication number: 20150129559
    Abstract: Weld metals and methods for welding ferritic steels are provided. The weld metals have high strength and high ductile tearing resistance and are suitable for use in strain based pipelines. The weld metals are comprised of between 0.03 and 0.08 wt % carbon, between 2.0 and 3.5 wt % nickel, not greater than about 2.0 wt % manganese, not greater than about 0.80 wt % molybdenum, not greater than about 0.70 wt % silicon, not greater than about 0.03 wt % aluminum, not greater than 0.02 wt % titanium, not greater than 0.04 wt % zirconium, between 100 and 225 ppm oxygen, not greater than about 100 ppm nitrogen, not greater than about 100 ppm sulfur, not greater than about 100 ppm phosphorus, and the balance essentially iron. The weld metals are applied using a power source with pulsed current waveform control with <5% CO2 and <2% oxygen in the shielding gas.
    Type: Application
    Filed: June 24, 2013
    Publication date: May 14, 2015
    Inventors: Douglas P. Fairchild, Mario L. Macia, Nathan E. Nissley, Raghavan Ayer, Hyun-Woo Jin, Adnan Ozekcin
  • Publication number: 20150132539
    Abstract: A coated device comprising a body, a coating on at least a portion of a surface of the body, wherein the coating comprises, a terminal layer, and at least one underlayer positioned between the terminal layer and the body, the underlayer comprising a hardness of greater than 61 HRc, wherein prior to the addition of the terminal layer, at least one of the body and the underlayer is polished to a surface roughness of less than or equal to 1.0 micrometer Ra.
    Type: Application
    Filed: August 28, 2014
    Publication date: May 14, 2015
    Inventors: Jeffrey R. Bailey, Srinivasan Rajagopalan, Mehmet Deniz Ertas, Adnan Ozekcin, Bo Zhao
  • Publication number: 20140173995
    Abstract: Provided are methods to make a drilling tool with low friction coatings to reduce balling and friction. In one form, the method includes providing one or more drilling tool components with specified locations for fitting cutters, inserts, bearings, rollers, additional non-coated components, or combinations thereof; cleaning the one or more drilling tool components; applying masking for fitting cutters, inserts, bearings, rollers, additional non-coated components or combinations thereof; applying a multi-layer low friction coating to the cleaned specified locations; removing the masking from the cleaned and coated specified locations of the one or more drilling components; inserting cutters and inserts and assembling moving parts to the cleaned and coated specified locations of the one or more drilling tool components; and assembling the one or more drilling tool components to form a drilling tool.
    Type: Application
    Filed: December 19, 2013
    Publication date: June 26, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Jeffrey Roberts Bailey, Srinivasan Rajagopalan, Tabassumul Haque, Adnan Ozekcin, Mehmet Deniz Ertas, HyunWoo Jin, Bo Zhao, Russell Robert Mueller
  • Publication number: 20140178637
    Abstract: Provided are low friction coatings with improved abrasion, wear resistance and methods of making such coatings. In one form, the coating includes: i) an under layer selected from the group consisting of CrN, TiN, TiAlN, TiAlVN, TiAlVCN, TiSiN, TiSiCN, TiAlSiN and combinations thereof, wherein the under layer ranges in thickness from 0.1 to 100 ?m, ii) an adhesion promoting layer selected from the group consisting of Cr, Ti, Si, W, CrC, TiC, SiC, WC, and combinations thereof, wherein the adhesion promoting layer ranges in thickness from 0.1 to 50 ?m and is contiguous with a surface of the under layer, and iii) a functional layer selected from the group consisting of a fullerene based composite, a diamond based material, diamond-like-carbon and combinations thereof, wherein the functional layer ranges from 0.1 to 50 ?m and is contiguous with a surface of the adhesion promoting layer.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Srinivasan Rajagopalan, Tabassumul Haque, Mehmet Deniz Ertas, Adnan Ozekcin, HyunWoo Jin, Bo Zhao
  • Patent number: 8602113
    Abstract: Provided are coated oil and gas well production devices and methods of making and using such coated devices. In one form, the coated device includes one or more cylindrical bodies, hardbanding on at least a portion of the exposed outer surface, exposed inner surface, or a combination of both exposed outer or inner surface of the one or more cylindrical bodies, and a coating on at least a portion of the inner surface, the outer surface, or a combination thereof of the one or more cylindrical bodies. The coating includes one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating. The coated oil and gas well production devices may provide for reduced friction, wear, erosion, corrosion, and deposits for well construction, completion and production of oil and gas.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: December 10, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Hyun Woo Jin, Srinivasan Rajagopalan, Adnan Ozekcin, Tabassumul Haque, Mehmet Deniz Ertas, Bo Zhao, Jeffrey Roberts Bailey, Terris Field Walker
  • Patent number: 8590627
    Abstract: Provided are coated sleeved oil and gas well production devices and methods of making and using such coated sleeved devices. In one form, the coated sleeved oil and gas well production device includes one or more cylindrical bodies, one or more sleeves proximal to the outer diameter or inner diameter of the one or more cylindrical bodies, hardbanding on at least a portion of the exposed outer surface, exposed inner surface, or a combination of both exposed outer or inner surface of the one or more sleeves, and a coating on at least a portion of the inner sleeve surface, the outer sleeve surface, or a combination thereof of the one or more sleeves. The coating includes one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating. The coated sleeved oil and gas well production devices may provide for reduced friction, wear, erosion, corrosion, and deposits for well construction, completion and production of oil and gas.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: November 26, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Hyun Woo Jin, Srinivasan Rajagopalan, Adnan Ozekcin, Tabassumul Haque, Mehmet Deniz Ertas, Bo Zhao, Jeffrey Roberts Bailey, Terris Field Walker
  • Publication number: 20130292362
    Abstract: Weld metals and methods for welding ferritic steels are provided. The weld metals have high strength and high ductile tearing resistance and are suitable for use in strain based pipelines. The weld metal contains retained austenite and has a cellular microstructure with cell walls containing lath martensite and cell interiors containing degenerate upper bainite. The weld metals are comprised of between 0.02 and 0.12 wt % carbon, between 7.50 and 14.50 wt % nickel, not greater than about 1.00 wt % manganese, not greater than about 0.30 wt % silicon, not greater than about 150 ppm oxygen, not greater than about 100 ppm sulfur, not greater than about 75 ppm phosphorus, and the balance essentially iron. Other elements may be added to enhance the properties of the weld metal. The weld metals are applied using a power source with current waveform control which produces a smooth, controlled welding arc and weld pool in the absence of CO2 or oxygen in the shielding gas.
    Type: Application
    Filed: December 12, 2011
    Publication date: November 7, 2013
    Inventors: Douglas P. Fairchild, Mario L. Macia, Steven J. Ford, Nathan E. Nissley, Raghavan Ayer, Hyun-Woo Jin, Adnan Ozekcin
  • Patent number: 8561707
    Abstract: Provided are drill stem assemblies with ultra-low friction coatings for subterraneous drilling operations. In one form, the coated drill stem assemblies for subterraneous rotary drilling operations include a body assembly with an exposed outer surface including a drill string coupled to a bottom hole assembly, a coiled tubing coupled to a bottom hole assembly, or a casing string coupled to a bottom hole assembly and an ultra-low friction coating on at least a portion of the exposed outer surface of the body assembly, hardbanding on at least a portion of the exposed outer surface of the body assembly, an ultra-low friction coating on at least a portion of the hardbanding, wherein the ultra-low friction coating comprises one or more ultra-low friction layers, and one or more buttering layers interposed between the hardbanding and the ultra-low friction coating.
    Type: Grant
    Filed: March 8, 2011
    Date of Patent: October 22, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Hyun Woo Jin, Srinivasan Rajagopalan, Adnan Ozekcin, Tabassumul Haque, Mehmet Deniz Ertas, Bo Zhao, Jeffrey Roberts Bailey, Terris Field Walker