Patents by Inventor Adrian Holland

Adrian Holland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7331190
    Abstract: Coolant systems, for power sources (e.g. internal combustion engines, fuel cells, and nuclear reactors) or microprocessors for example, are beneficially operated with coolant in a nucleate boiling state, but transitions to damaging film boiling are then possible. The disclosed coolant system includes a sensor, such as a thermocouple or thermistor, that provides a signal representative of fluctuations in the temperature at a heated surface. The signal also includes at least one parameter. A controller processes the signal to determine changes in the parameter of the signal and/or to determine the state of the coolant and can responsively change the coolant flow to avoid undesirable coolant states. For example, coolant flow can be changed by changing the output of a coolant pump. The controller can change coolant flow automatically, or a signal can be provided to an operator that an undesirable coolant state change is imminent or has occurred, thereby allowing operator intervention.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: February 19, 2008
    Assignee: Perkins Engines Company Limited
    Inventors: Colin Peter Garner, Adrian Holland
  • Patent number: 7028763
    Abstract: Heat transfer in coolant circuits, as in an internal combustion engine for example, can be beneficially enhanced by maintaining the coolant in a nucleate boiling state, but undesirable transitions to a film boiling state are then possible. The disclosed coolant circuit has selected surface(s) that have a tendency to experience high heat flux in comparison to adjacent surfaces in the coolant circuit. These surfaces are provided with a surface configuration, such as a matrix of nucleation cavities, which has a tendency to inhibit a change in boiling state. The surface configuration can be provided on the parent coolant circuit surface or on a surface of an insert positioned in the coolant circuit. Thus, transitions to film boiling can be effectively avoided at locations in the coolant circuit that are susceptible to such transitions.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: April 18, 2006
    Assignee: Caterpillar Inc.
    Inventors: Colin Peter Garner, Adrian Holland
  • Publication number: 20040200442
    Abstract: Heat transfer in coolant circuits, as in an internal combustion engine for example, can be beneficially enhanced by maintaining the coolant in a nucleate boiling state, but undesirable transitions to a film boiling state are then possible. The disclosed coolant circuit has selected surface(s) that have a tendency to experience high heat flux in comparison to adjacent surfaces in the coolant circuit. These surfaces are provided with a surface configuration, such as a matrix of nucleation cavities, which has a tendency to inhibit a change in boiling state. The surface configuration can be provided on the parent coolant circuit surface or on a surface of an insert positioned in the coolant circuit. Thus, transitions to film boiling can be effectively avoided at locations in the coolant circuit that are susceptible to such transitions.
    Type: Application
    Filed: December 11, 2003
    Publication date: October 14, 2004
    Applicant: Perkins Engines Company
    Inventors: Colin Peter Garner, Adrian Holland
  • Publication number: 20040194910
    Abstract: Coolant systems, for power sources (e.g. internal combustion engines, fuel cells, and nuclear reactors) or microprocessors for example, are beneficially operated with coolant in a nucleate boiling state, but transitions to damaging film boiling are then possible. The disclosed coolant system includes a sensor, such as a thermocouple or thermistor, that provides a signal representative of fluctuations in the temperature at a heated surface. The signal also includes at least one parameter. A controller processes the signal to determine changes in the parameter of the signal and/or to determine the state of the coolant and can responsively change the coolant flow to avoid undesirable coolant states. For example, coolant flow can be changed by changing the output of a coolant pump. The controller can change coolant flow automatically, or a signal can be provided to an operator that an undesirable coolant state change is imminent or has occurred, thereby allowing operator intervention.
    Type: Application
    Filed: December 11, 2003
    Publication date: October 7, 2004
    Applicant: Perkins Engines Company Limited.
    Inventors: Colin Peter Garner, Adrian Holland