Patents by Inventor Adrian Maxim

Adrian Maxim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11822163
    Abstract: A novel and useful quantum computing machine includes classic computing and quantum computing cores. A programmable pattern generator executes instructions that control the quantum core. A pulse generator generates the control signals input to the quantum core to perform quantum operations. A partial readout of the quantum state is re-injected into the quantum core to extend decoherence time. Access gates control movement of quantum particles in the quantum core. Errors are corrected from the readout before being re-injected into the quantum core. Internal and external calibration loops calculate error syndromes and calibrate control pulses input to the quantum core. Control of the quantum core is provided from an external support unit via the pattern generator or retrieved from classic memory where sequences of commands are stored in memory. A cryostat unit functions to cool the quantum computing core to approximately 4 Kelvin.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: November 21, 2023
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11635642
    Abstract: A novel and useful quantum computing machine architecture that includes a classic computing core as well as a quantum computing core. A programmable pattern generator executes sequences of instructions that control the quantum core. In accordance with the sequences, a pulse generator functions to generate the control signals that are input to the quantum core to perform quantum operations. A partial readout of the quantum state in the quantum core is generated that is subsequently re-injected back into the quantum core to extend decoherence time. Access gates control movement of quantum particles in the quantum core. Errors are corrected from the partial readout before being re-injected back into the quantum core. Internal and external calibration loops calculate error syndromes and calibrate the control pulses input to the quantum core.
    Type: Grant
    Filed: December 18, 2021
    Date of Patent: April 25, 2023
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11611032
    Abstract: A novel and useful modified semiconductor fabrication technique for realizing reliable semiconductor quantum structures. Quantum structures require a minimization of the parasitic capacitance of the control gate and the quantum well. The modified semiconductor process eliminates the fabrication of the metal, contact, and optionally the raised diffusion layers from the quantum wells, thereby resulting in much lower well and gate capacitances and therefore larger Coulomb blockade voltages. This allows easier implementation of the electronic control circuits in that they can have larger intrinsic noise and relaxed analog resolution. Several processes are disclosed including implementations of semiconductor quantum structures with tunneling through an oxide layer as well as tunneling through a local well depleted region. These techniques can be used in both planar semiconductor processes and 3D, e.g., FinFET, semiconductor processes. A dedicated process masking step is used for realizing the raised diffusions.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: March 21, 2023
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11454833
    Abstract: Novel and useful quantum structures having a continuous well with control gates that control a local depletion region to form quantum dots. Local depleted well tunneling is used to control quantum operations to implement quantum computing circuits. Qubits are realized by modulating gate potential to control tunneling through local depleted region between two or more sections of the well. Complex structures with a higher number of qdots per continuous well and a larger number of wells are fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. Combining a number of elementary quantum structure, a quantum computing machine is realized. An interface device provides an interface between classic circuitry and quantum circuitry by permitting tunneling of a single quantum particle from the classic side to the quantum side of the device.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: September 27, 2022
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11454834
    Abstract: Novel and useful quantum structures having a continuous well with control gates that control a local depletion region to form quantum dots. Local depleted well tunneling is used to control quantum operations to implement quantum computing circuits. Qubits are realized by modulating gate potential to control tunneling through local depleted region between two or more sections of the well. Complex structures with a higher number of qdots per continuous well and a larger number of wells are fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. Combining a number of elementary quantum structure, a quantum computing machine is realized. An interface device provides an interface between classic circuitry and quantum circuitry by permitting tunneling of a single quantum particle from the classic side to the quantum side of the device.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: September 27, 2022
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11450760
    Abstract: Novel and useful quantum structures having a continuous fully depleted well with control gates that form two quantum dot on either side of the gate. Appropriate potentials are applied to the well and control gate to control quantum tunneling between quantum dots thereby enabling quantum operations to occur. Qubits are realized by modulating applied gate potential to control tunneling through a quantum transport path between two or more sections of the well. Complex structures with a higher number of quantum dots per continuous well and a larger number of wells can be fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. An injection device permits tunneling of a single quantum particle from a classic side to a quantum side of the device. Detection interface devices detect the presence or absence of a particle destructively or nondestructively.
    Type: Grant
    Filed: January 20, 2020
    Date of Patent: September 20, 2022
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11423322
    Abstract: A novel and useful fully integrated quantum computer containing both quantum core circuitry and associated classical electronic control circuits on the same monolithic die. The integrated quantum computer avoids ESD loading on the quantum structures and minimizes the need for long interconnects with resultant large parasitic inductances and capacitances. Such parasitics reduce the maximum operating frequency of the realized quantum core structures. A cryostat unit functions to provide several temperatures to the quantum computer including a temperature to cool the quantum core to approximately 4° K and the interface SoC to 77° K. Alternatively, the interface circuitry is also integrated with the main QPU on the same die. A programmable pattern generator executes sequences of instructions that control the quantum core. In accordance with the sequences, a pulse generator functions to generate the control signals that are input to the quantum core to perform quantum operations.
    Type: Grant
    Filed: January 5, 2020
    Date of Patent: August 23, 2022
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11366345
    Abstract: Novel and useful quantum structures that provide various control functions. Particles are brought into close proximity to interact with one another and exchange information. After entanglement, the particles are moved away from each other but they still carry the information contained initially. Measurement and detection are performed on the particles from the entangled ensemble to determine whether the particle is present or not in a given qdot. A quantum interaction gate is a circuit or structure operating on a relatively small number of qubits. Quantum interaction gates implement several quantum functions including a controlled NOT gate, quantum annealing gate, controlled SWAP gate, a controlled Pauli rotation gate, and ancillary gate. These quantum interaction gates can have numerous shapes including double V shape, H shape, X shape, L shape, I shape, etc.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: June 21, 2022
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11327344
    Abstract: Novel and useful quantum structures having a continuous well with control gates that control a local depletion region to form quantum dots. Local depleted well tunneling is used to control quantum operations to implement quantum computing circuits. Qubits are realized by modulating gate potential to control tunneling through local depleted region between two or more sections of the well. Complex structures with a higher number of qdots per continuous well and a larger number of wells are fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. Combining a number of elementary quantum structure, a quantum computing machine is realized. An interface device provides an interface between classic circuitry and quantum circuitry by permitting tunneling of a single quantum particle from the classic side to the quantum side of the device.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: May 10, 2022
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11327345
    Abstract: Novel and useful electronic and magnetic control of several quantum structures that provide various control functions. An electric field provides control and is created by a voltage applied to a control terminal. Alternatively, an inductor or resonator provides control. An electric field functions as the main control and an auxiliary magnetic field provides additional control on the control gate. The magnetic field is used to control different aspects of the quantum structure. The magnetic field impacts the spin of the electron by tending to align to the magnetic field. The Bloch sphere is a geometrical representation of the state of a two-level quantum system and defined by a vector in x, y, z spherical coordinates.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: May 10, 2022
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20220137439
    Abstract: A novel and useful quantum computing machine architecture that includes a classic computing core as well as a quantum computing core. A programmable pattern generator executes sequences of instructions that control the quantum core. In accordance with the sequences, a pulse generator functions to generate the control signals that are input to the quantum core to perform quantum operations. A partial readout of the quantum state in the quantum core is generated that is subsequently re-injected back into the quantum core to extend decoherence time. Access gates control movement of quantum particles in the quantum core. Errors are corrected from the partial readout before being re-injected back into the quantum core. Internal and external calibration loops calculate error syndromes and calibrate the control pulses input to the quantum core.
    Type: Application
    Filed: December 18, 2021
    Publication date: May 5, 2022
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11300816
    Abstract: Novel and useful electronic and magnetic control of several quantum structures that provide various control functions. An electric field provides control and is created by a voltage applied to a control terminal. Alternatively, an inductor or resonator provides control. An electric field functions as the main control and an auxiliary magnetic field provides additional control on the control gate. The magnetic field is used to control different aspects of the quantum structure. The magnetic field impacts the spin of the electron by tending to align to the magnetic field. The Bloch sphere is a geometrical representation of the state of a two-level quantum system and defined by a vector in x, y, z spherical coordinates.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: April 12, 2022
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11281030
    Abstract: Novel and useful electronic and magnetic control of several quantum structures that provide various control functions. An electric field provides control and is created by a voltage applied to a control terminal. Alternatively, an inductor or resonator provides control. An electric field functions as the main control and an auxiliary magnetic field provides additional control on the control gate. The magnetic field is used to control different aspects of the quantum structure. The magnetic field impacts the spin of the electron by tending to align to the magnetic field. The Bloch sphere is a geometrical representation of the state of a two-level quantum system and defined by a vector in x, y, z spherical coordinates.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: March 22, 2022
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11275260
    Abstract: A novel and useful quantum computing machine architecture that includes a classic computing core as well as a quantum computing core. A programmable pattern generator executes sequences of instructions that control the quantum core. In accordance with the sequences, a pulse generator functions to generate the control signals that are input to the quantum core to perform quantum operations. A partial readout of the quantum state in the quantum core is generated that is subsequently re-injected back into the quantum core to extend decoherence time. Access gates control movement of quantum particles in the quantum core. Errors are corrected from the partial readout before being re-injected back into the quantum core. Internal and external calibration loops calculate error syndromes and calibrate the control pulses input to the quantum core.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: March 15, 2022
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11214484
    Abstract: Novel and useful quantum structures having a continuous well with control gates that control a local depletion region to form quantum dots. Local depleted well tunneling is used to control quantum operations to implement quantum computing circuits. Qubits are realized by modulating gate potential to control tunneling through local depleted region between two or more sections of the well. Complex structures with a higher number of qdots per continuous well and a larger number of wells are fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. Combining a number of elementary quantum structure, a quantum computing machine is realized. An interface device provides an interface between classic circuitry and quantum circuitry by permitting tunneling of a single quantum particle from the classic side to the quantum side of the device.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: January 4, 2022
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 11203526
    Abstract: A novel and useful quantum computing machine architecture that includes a classic computing core as well as a quantum computing core. A programmable pattern generator executes sequences of instructions that control the quantum core. In accordance with the sequences, a pulse generator functions to generate the control signals that are input to the quantum core to perform quantum operations. A partial readout of the quantum state in the quantum core is generated that is subsequently re-injected back into the quantum core to extend decoherence time. Access gates control movement of quantum particles in the quantum core. Errors are corrected from the partial readout before being re-injected back into the quantum core. Internal and external calibration loops calculate error syndromes and calibrate the control pulses input to the quantum core.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: December 21, 2021
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20210143313
    Abstract: A novel and useful modified semiconductor fabrication technique for realizing reliable semiconductor quantum structures. Quantum structures require a minimization of the parasitic capacitance of the control gate and the quantum well. The modified semiconductor process eliminates the fabrication of the metal, contact, and optionally the raised diffusion layers from the quantum wells, thereby resulting in much lower well and gate capacitances and therefore larger Coulomb blockade voltages. This allows easier implementation of the electronic control circuits in that they can have larger intrinsic noise and relaxed analog resolution. Several processes are disclosed including implementations of semiconductor quantum structures with tunneling through an oxide layer as well as tunneling through a local well depleted region. These techniques can be used in both planar semiconductor processes and 3D, e.g., FinFET, semiconductor processes. A dedicated process masking step is used for realizing the raised diffusions.
    Type: Application
    Filed: January 25, 2021
    Publication date: May 13, 2021
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Publication number: 20210067176
    Abstract: A novel and useful quantum computing machine architecture that includes a classic computing core as well as a quantum computing core. A programmable pattern generator executes sequences of instructions that control the quantum core. In accordance with the sequences, a pulse generator functions to generate the control signals that are input to the quantum core to perform quantum operations. A partial readout of the quantum state in the quantum core is generated that is subsequently re-injected back into the quantum core to extend decoherence time. Access gates control movement of quantum particles in the quantum core. Errors are corrected from the partial readout before being re-injected back into the quantum core. Internal and external calibration loops calculate error syndromes and calibrate the control pulses input to the quantum core.
    Type: Application
    Filed: June 19, 2019
    Publication date: March 4, 2021
    Applicant: equal1.labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10934163
    Abstract: Novel and useful quantum structures having a continuous well with control gates that control a local depletion region to form quantum dots. Local depleted well tunneling is used to control quantum operations to implement quantum computing circuits. Qubits are realized by modulating gate potential to control tunneling through local depleted region between two or more sections of the well. Complex structures with a higher number of qdots per continuous well and a larger number of wells are fabricated. Both planar and 3D FinFET semiconductor processes are used to build well to gate and well to well tunneling quantum structures. Combining a number of elementary quantum structure, a quantum computing machine is realized. An interface device provides an interface between classic circuitry and quantum circuitry by permitting tunneling of a single quantum particle from the classic side to the quantum side of the device.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: March 2, 2021
    Assignee: Equal1.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker
  • Patent number: 10903413
    Abstract: A novel and useful modified semiconductor fabrication technique for realizing reliable semiconductor quantum structures. Quantum structures require a minimization of the parasitic capacitance of the control gate and the quantum well. The modified semiconductor process eliminates the fabrication of the metal, contact, and optionally the raised diffusion layers from the quantum wells, thereby resulting in much lower well and gate capacitances and therefore larger Coulomb blockade voltages. This allows easier implementation of the electronic control circuits in that they can have larger intrinsic noise and relaxed analog resolution. Several processes are disclosed including implementations of semiconductor quantum structures with tunneling through an oxide layer as well as tunneling through a local well depleted region. These techniques can be used in both planar semiconductor processes and 3D, e.g., FinFET, semiconductor processes. A dedicated process masking step is used for realizing the raised diffusions.
    Type: Grant
    Filed: January 5, 2020
    Date of Patent: January 26, 2021
    Assignee: Equal!.Labs Inc.
    Inventors: Dirk Robert Walter Leipold, George Adrian Maxim, Michael Albert Asker