Patents by Inventor Adrian Sapio

Adrian Sapio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10234536
    Abstract: A method of geolocating comprises: receiving wirelessly, at an asset located on the Earth's surface and from at least two airborne aircraft, ADS-B signals, respectively; interpolating, using a Bayes filter, at least some state information of the at least two airborne aircraft based on the ADS-B signals, respectively; determining differences in received signal strength indicator (RSSI) values (RSSI-difference values) of successive aircraft-specific ADS-B signals, respectively; estimating, using a likelihood function, locations of the asset based on the RSSI-difference values, the ADS-B signals and the interpolated state information, respectively, thereby producing a set of estimated locations; and searching amongst the set to find one of the estimated locations that is regarded as being most likely to most accurately describe an actual position of the asset.
    Type: Grant
    Filed: November 29, 2015
    Date of Patent: March 19, 2019
    Assignee: LINK LABS, INC.
    Inventors: Ricardo Luna, Jr., Adrian Sapio, Richard Kevin Sawyer, Jr., Mark Olden Bloechl
  • Patent number: 10070479
    Abstract: Provided are apparatuses and methods for control of each of data usage and power consumption of cellular network services. Based on such control, a consumer cost of that data usage is reduced, and a battery life of a device for carrying out data communications is increased.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: September 4, 2018
    Assignee: LINK LABS, INC.
    Inventors: Brian Emery Ray, Adrian Sapio
  • Patent number: 9860882
    Abstract: A method of operating an end node to communicate with a central node, the method comprising: wirelessly receiving, a beacon signal periodically-transmitted from the central node; each beacon signal denoting the start of a single frame; each frame being organized to include a downlink (DL) phase which precedes an uplink (UL) phase; and a payload of the beacon signal including an offset which represents a starting time of the UL phase. The method further comprises: generating a message; selecting, unbeknownst to the central node, at least one UL logical-channel, respectively; and wirelessly transmitting, during the UL phase, at least a portion of the message from the end node over the selected at least one UL logical-channel according to a slotted ALOHA technique.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: January 2, 2018
    Assignee: LINK LABS, INC.
    Inventors: Adrian Sapio, Richard Kevin Sawyer, Jr., Allen Parker Welkie, Ricardo Luna, Jr.
  • Patent number: 9775157
    Abstract: A method, of operating an end node to wirelessly communicate with a central node, includes: receiving wirelessly a current instance of a beacon signal periodically-transmitted from the central node; measuring a received power, PB-RX, of the beacon signal; reading locally-stored values of PB-TX and G representing a presumed transmitted power of the beacon signal and a performance goal of the end node, respectively; determining, for a given channel, a path loss, PL, based on the PB-RX and the PB-TX; and adaptively setting an energy level, EN-TX, of a forthcoming message to be transmitted from the end node by adaptively determining, based on PL and G, at least two of: a level of power, PN-TX; a forward error correction coding rate, c; and a spreading factor, SF; and a modulation format, M.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: September 26, 2017
    Assignee: Link Labs, Inc.
    Inventors: Ricardo Luna, Jr., Adrian Sapio, Richard Kevin Sawyer, Jr.
  • Publication number: 20170153323
    Abstract: A method of geolocating comprises: receiving wirelessly, at an asset located on the Earth's surface and from at least two airborne aircraft, ADS-B signals, respectively; interpolating, using a Bayes filter, at least some state information of the at least two airborne aircraft based on the ADS-B signals, respectively; determining differences in received signal strength indicator (RSSI) values (RSSI-difference values) of successive aircraft-specific ADS-B signals, respectively; estimating, using a likelihood function, locations of the asset based on the RSSI-difference values, the ADS-B signals and the interpolated state information, respectively, thereby producing a set of estimated locations; and searching amongst the set to find one of the estimated locations that is regarded as being most likely to most accurately describe an actual position of the asset.
    Type: Application
    Filed: November 29, 2015
    Publication date: June 1, 2017
    Applicant: Link Labs, Inc.
    Inventors: Ricardo LUNA, JR., Adrian SAPIO, Richard Kevin SAWYER, JR., Mark Olden BLOECHL
  • Patent number: 9660768
    Abstract: A method (of operating a central node to acknowledge received messages) includes: receiving multiple data messages from multiple instances of a message-sourceable end node, respectively, each end-node-instance having an at least substantially unique identification (“ID”); and sending a dense acknowledgement message (“dense ACK”) acknowledging receipt of the data messages but not explicitly identifying any of the IDs of the corresponding end-node-instances. And a method (of operating a given instance of the end node to infer a delivery-condition at the central node of a data message sent by the given instance) including: sending a given data message including the substantially unique ID; receiving a dense ACK including a payload indicating receipt of multiple data messages but not explicitly identifying IDs of the given end-node-instance nor of other end-node-instances corresponding to the received messages, respectively; and inferring the delivery-condition based on a manipulated payload of the dense ACK.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: May 23, 2017
    Assignee: LINK LABS, INC.
    Inventors: Adrian Sapio, Jeffrey Andrew Koul, Allen Welke, Brian Emery Ray
  • Publication number: 20170127403
    Abstract: A method of operating an end node to communicate with a central node, the method comprising: wirelessly receiving, a beacon signal periodically-transmitted from the central node; each beacon signal denoting the start of a single frame; each frame being organized to include a downlink (DL) phase which precedes an uplink (UL) phase; and a payload of the beacon signal including an offset which represents a starting time of the UL phase. The method further comprises: generating a message; selecting, unbeknownst to the central node, at least one UL logical-channel, respectively; and wirelessly transmitting, during the UL phase, at least a portion of the message from the end node over the selected at least one UL logical-channel according to a slotted ALOHA technique.
    Type: Application
    Filed: November 2, 2015
    Publication date: May 4, 2017
    Applicant: LINK LABS, LLC
    Inventors: Adrian SAPIO, Richard Kevin SAWYER, Jr., Allen Parker WELKIE, Ricardo LUNA, Jr.
  • Publication number: 20160323886
    Abstract: A method, of operating an end node to wirelessly communicate with a central node, includes: receiving wirelessly a current instance of a beacon signal periodically-transmitted from the central node; measuring a received power, PB-RX, of the beacon signal; reading locally-stored values of PB-TX and G representing a presumed transmitted power of the beacon signal and a performance goal of the end node, respectively; determining, for a given channel, a path loss, PL, based on the PB-RX and the PB-TX; and adaptively setting an energy level, EN-TX, of a forthcoming message to be transmitted from the end node by adaptively determining, based on PL and G, at least two of: a level of power, PN-TX; a forward error correction coding rate, c; and a spreading factor, SF; and a modulation format, M.
    Type: Application
    Filed: December 9, 2015
    Publication date: November 3, 2016
    Applicant: Link Labs, Inc.
    Inventors: Ricardo LUNA, JR., Adrian SAPIO, Richard Kevin SAWYER, JR.
  • Publication number: 20160218833
    Abstract: A method (of operating a central node to acknowledge received messages) includes: receiving multiple data messages from multiple instances of a message-sourceable end node, respectively, each end-node-instance having an at least substantially unique identification (“ID”); and sending a dense acknowledgement message (“dense ACK”) acknowledging receipt of the data messages but not explicitly identifying any of the IDs of the corresponding end-node-instances. And a method (of operating a given instance of the end node to infer a delivery-condition at the central node of a data message sent by the given instance) including: sending a given data message including the substantially unique ID; receiving a dense ACK including a payload indicating receipt of multiple data messages but not explicitly identifying IDs of the given end-node-instance nor of other end-node-instances corresponding to the received messages, respectively; and inferring the delivery-condition based on a manipulated payload of the dense ACK.
    Type: Application
    Filed: January 26, 2015
    Publication date: July 28, 2016
    Applicant: Link Labs, LLC
    Inventors: Adrian SAPIO, Jeffrey Andrew KOUL, Allen WELKE, Brian Emery RAY
  • Patent number: 9264099
    Abstract: A method (of operating an end node) includes: wirelessly receiving an instance of a non-hopping beacon signal, B, periodically-transmitted from a central node; interpreting a frequency-block hopping guide (FBHG) according to FN(i) and IDCN thereby to determine a corresponding set, CSET(i), of at least two channels available to the end node for transmission, respectively, during frame FN(i); selecting, at least pseudo-randomly, at least one channel amongst the set CSET(i); and wirelessly transmitting at least one message from the end node using the at least one selected channel, respectively. Each instance B(i) includes: a corresponding frame number, FN(i); and an identification, IDCN, of the central node. The FBHG establishes: a total of L frames; a set of channels CSET for each frame, respectively; and that, for any two consecutive ones of the L frames, FN(j) and FN(j+1), the corresponding sets CSET(j) and CSET(j+1) will be different, CSET(j)?CSET(j+1).
    Type: Grant
    Filed: June 2, 2015
    Date of Patent: February 16, 2016
    Assignee: Link Labs, INC.
    Inventors: Adrian Sapio, Richard Kevin Sawyer, Jr.
  • Patent number: 9253727
    Abstract: A method, of operating an end node to wirelessly communicate with a central node, includes: receiving wirelessly a current instance of a beacon signal periodically-transmitted from the central node; measuring a received power, PB-RX, of the beacon signal; reading locally-stored values of PB-TX and G representing a presumed transmitted power of the beacon signal and a performance goal of the end node, respectively; determining, for a given channel, a path loss, PL, based on the PB-RX and the PB-TX; and adaptively setting an energy level, EN-TX, of a forthcoming message to be transmitted from the end node based on PL and G.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: February 2, 2016
    Assignee: LINK LABS, INC.
    Inventors: Ricardo Luna, Jr., Adrian Sapio, Richard Kevin Sawyer, Jr.
  • Patent number: 8314561
    Abstract: A multi-channel radio frequency (RF) generator module includes N power amplifiers, M drivers, a power supply module, and a control module. The N power amplifiers generate N RF outputs, respectively. The M drivers drive the N power amplifiers based on M driver control signals, respectively. The power supply module receives alternating current (AC) input power and applies L rail voltages to the N power amplifiers based on L rail voltage setpoints, respectively. The control module sets the L rail voltage setpoints and the M driver control signals. N is an integer greater than one, L and M are integers greater than zero, and M and L are less than or equal to N.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: November 20, 2012
    Assignee: MKS Instruments, Inc.
    Inventors: Larry J. Fisk, Adrian Sapio
  • Publication number: 20110241773
    Abstract: A multi-channel radio frequency (RF) generator module includes N power amplifiers, M drivers, a power supply module, and a control module. The N power amplifiers generate N RF outputs, respectively. The M drivers drive the N power amplifiers based on M driver control signals, respectively. The power supply module receives alternating current (AC) input power and applies L rail voltages to the N power amplifiers based on L rail voltage setpoints, respectively. The control module sets the L rail voltage setpoints and the M driver control signals. N is an integer greater than one, L and M are integers greater than zero, and M and L are less than or equal to N.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 6, 2011
    Applicant: MKS Instruments, Inc.
    Inventors: Larry J. Fisk, Adrian Sapio