Patents by Inventor Adrian Trachte

Adrian Trachte has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11858511
    Abstract: A control system for a motor vehicle, for outputting a controlled variable, with the aid of which a directly controlled variable of a motor vehicle is adjustable via suitable control operations, in order to adapt the directly controlled variable to a reference variable of the control system. The control system includes a controller, which is configured to output a first output variable on the basis of the directly controlled variable of the motor vehicle, and on the basis of the reference variable of the control system. The control system further includes a predictive model, which may be trained to output a second output variable that reflects a deviation of a driving behavior of a driver of the motor vehicle from the first output variable of the controller. The controlled variable of the control system encompasses an addition of the first output variable and the second output variable.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: January 2, 2024
    Assignee: ROBERT BOSCH GMBH
    Inventors: Adrian Trachte, Benedikt Alt, Carolina Passenberg, Michael Herman, Michael Hilsch
  • Patent number: 11448099
    Abstract: The invention relates to a control circuit (27) for a waste heat recovery system (2) for a heat engine (36). The waste heat recovery system (2) comprises at least one evaporator (21) for converting waste heat from the exhaust gas (31, 31a) generated by the heat engine (36) into a working medium (23), at least one expansion machine (24) which can be driven by the working medium (23), at least one condenser (25) for condensing the working medium (23a) expanded in the expansion machine (24) into the liquid state (23b), and at least one conveying device (26) for increasing the pressure of the condensed working medium (23b) and conveying same into the evaporator (21). The control circuit (27) influences at least one control variable which controls the energy transmission from the exhaust gas (31, 31a) to the working medium (23b) and/or the energy transmission from the working medium (23c) to the expansion machine (24).
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: September 20, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Herwig Koppauer, Andreas Kugi, Wolfgang Kemmetmueller, Christian Fleck, Matthias Bitzer, Adrian Trachte, Carolina Passenberg, Derya Lindenmeier, Thomas Specker
  • Publication number: 20220243718
    Abstract: A method is for producing, for a hydraulic machine having an actuator, a setpoint-value trajectory satisfying predefined limitations in order to influence an output variable of the hydraulic machine. A trajectory of unlimited setpoint values is fed to a trajectory planning function, which produces the setpoint-value trajectory from the trajectory of unlimited setpoint values. In the trajectory planning function, the trajectory of unlimited setpoint values is differentiated at least twice in order to obtain a trajectory of unlimited setpoint values that is differentiated n times. In the trajectory planning function, at least one limitation is applied to the differentiated trajectory of unlimited setpoint values in order to obtain a differentiated trajectory of limited setpoint values. The differentiated trajectory of limited setpoint values is fed to a filter integrator chain in order to obtain the setpoint-value trajectory.
    Type: Application
    Filed: July 2, 2020
    Publication date: August 4, 2022
    Inventors: Steffen Mutschler, Adrian Trachte, Carolina Passenberg, Steffen Joos
  • Patent number: 11366463
    Abstract: A method for assessing a control loop. In the method, the control loop is assigned one degree of fulfillment each with respect to at least three quality criteria. The surface area of a polygon having a geometry defined by the degrees of fulfillment is determined. An overall control quality of the control loop is evaluated on the basis of the surface area.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: June 21, 2022
    Assignee: Robert Bosch GmbH
    Inventors: Patrik Zips, Markus Gurtner, Adrian Trachte, Daniel Seiler-Thull, Julian Ophey, Muhammed Atak
  • Publication number: 20210216064
    Abstract: A method for assessing a control loop. In the method, the control loop is assigned one degree of fulfillment each with respect to at least three quality criteria. The surface area of a polygon having a geometry defined by the degrees of fulfillment is determined. An overall control quality of the control loop is evaluated on the basis of the surface area.
    Type: Application
    Filed: November 5, 2020
    Publication date: July 15, 2021
    Inventors: Patrik Zips, Markus Gurtner, Adrian Trachte, Daniel Seiler-Thull, Julian Ophey, Muhammed Atak
  • Patent number: 11048281
    Abstract: The invention relates to a method for generating a control variable trajectory for an actuator so as to influence an input variable of a system, wherein a set point is supplied to the output variable of the system of a trajectory planning procedure, which from the set point generates a trajectory of constrained input values for a filter integrator chain and a trajectory of flat desired states, wherein the trajectory of constrained input values and the trajectory of flat desired states are supplied to a flatness-based feedforward control procedure that generates therefrom the control variable trajectory for the actuator, wherein in the trajectory planning procedure so as to generate the trajectory of constrained input values at least one constraint is applied in dependence upon the trajectory of flat desired states.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: June 29, 2021
    Assignee: Robert Bosch GmbH
    Inventors: Steffen Joos, Matthias Bitzer, Knut Graichen, Michael Hilsch, Adrian Trachte, Steffen Mutschler
  • Publication number: 20210114593
    Abstract: A control system for a motor vehicle, for outputting a controlled variable, with the aid of which a directly controlled variable of a motor vehicle is adjustable via suitable control operations, in order to adapt the directly controlled variable to a reference variable of the control system. The control system includes a controller, which is configured to output a first output variable on the basis of the directly controlled variable of the motor vehicle, and on the basis of the reference variable of the control system. The control system further includes a predictive model, which may be trained to output a second output variable that reflects a deviation of a driving behavior of a driver of the motor vehicle from the first output variable of the controller. The controlled variable of the control system encompasses an addition of the first output variable and the second output variable.
    Type: Application
    Filed: October 13, 2020
    Publication date: April 22, 2021
    Inventors: Adrian Trachte, Benedikt Alt, Carolina Passenberg, Michael Herman, Michael Hilsch
  • Publication number: 20200408112
    Abstract: The invention relates to a control circuit (27) for a waste heat recovery system (2) for a heat engine (36). The waste heat recovery system (2) comprises at least one evaporator (21) for converting waste heat from the exhaust gas (31, 31a) generated by the heat engine (36) into a working medium (23), at least one expansion machine (24) which can be driven by the working medium (23), at rl least one condenser (25) for condensing the working medium (23a) expanded in the expansion machine (24) into the liquid state (23b), and at least one conveying device (26) for increasing the pressure of the condensed working medium (23b) and conveying same into the evaporator (21). The control circuit (27) influences at least one control variable which controls the energy transmission from the exhaust gas (31, 31a) to the working medium (23b) and/or the energy transmission from the working medium (23c) to the expansion machine (24).
    Type: Application
    Filed: February 26, 2019
    Publication date: December 31, 2020
    Inventors: Herwig Koppauer, Andreas Kugi, Wolfgang Kemmetmueller, Christian Fleck, Matthias Bitzer, Adrian Trachte, Carolina Passenberg, Derya Lindenmeier, Thomas Specker
  • Patent number: 10683855
    Abstract: A method for operating an axial piston machine of swashplate design, in which a swashplate is settable by means of an adjustment device, and in which a controlled variable of the axial piston machine is regulated by predetermining a manipulated variable. Under the assumption of a constant intended value of the controlled variable, a future profile of the controlled variable is ascertained using a model of the axial piston machine in which respective current values of at least one operating variable of the axial piston machine, which comprises the controlled variable, and a current value of the manipulated variable are taken into account. A value to be set for the manipulated variable is ascertained and set taking into account the future profile of the controlled variable.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: June 16, 2020
    Assignee: Robert Bosch GmbH
    Inventors: Paul Zeman, Adrian Trachte, Daniel Seiler-Thull, Martin Wegscheider, Peter Altermann, Andreas Kugi, Wolfgang Kemmetmueller
  • Publication number: 20190377371
    Abstract: The invention relates to a method for generating a control variable trajectory for an actuator so as to influence an input variable of a system, wherein a set point is supplied to the output variable of the system of a trajectory planning procedure, which from the set point generates a trajectory of constrained input values for a filter integrator chain and a trajectory of flat desired states, wherein the trajectory of constrained input values and the trajectory of flat desired states are supplied to a flatness-based feedforward control procedure that generates therefrom the control variable trajectory for the actuator, wherein in the trajectory planning procedure so as to generate the trajectory of constrained input values at least one constraint is applied in dependence upon the trajectory of flat desired states.
    Type: Application
    Filed: June 5, 2019
    Publication date: December 12, 2019
    Inventors: Steffen Joos, Matthias Bitzer, Knut Graichen, Michael Hilsch, Adrian Trachte, Steffen Mutschler
  • Publication number: 20180340609
    Abstract: A method for controlling a hydrostatic drive, which has a driving engine, a hydraulic pump coupled to the driving engine and a hydraulic motor coupled to the hydraulic pump by way of a pressurized hydraulic work line, includes calculating a manipulated variable vector comprising at least one manipulated variable for the hydrostatic drive based on (i) an output torque setpoint value for a torque on a secondary shaft driven by the hydraulic motor, (ii) a rotational speed and torque of the driving engine emerging from a predetermined operating point characteristic for the driving engine, and (iii) volumetric and mechanical losses of at least one adjuster unit comprising the hydraulic pump and the hydraulic motor. The manipulated variable vector is used to control the hydrostatic drive.
    Type: Application
    Filed: May 25, 2018
    Publication date: November 29, 2018
    Inventors: Paul Zeman, Adrian Trachte, Daniel Seiler-Thull, Peter Altermann, Andreas Kugi, Wolfgang Kemmetmueller
  • Publication number: 20180135605
    Abstract: A method for operating an axial piston machine of swashplate design, in which a swashplate is settable by means of an adjustment device, and in which a controlled variable of the axial piston machine is regulated by predetermining a manipulated variable. Under the assumption of a constant intended value of the controlled variable, a future profile of the controlled variable is ascertained using a model of the axial piston machine in which respective current values of at least one operating variable of the axial piston machine, which comprises the controlled variable, and a current value of the manipulated variable are taken into account. A value to be set for the manipulated variable is ascertained and set taking into account the future profile of the controlled variable.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 17, 2018
    Inventors: Paul Zeman, Adrian Trachte, Daniel Seiler-Thull, Martin Wegscheider, Peter Altermann, Andreas Kugi, Wolfgang Kemmetmueller