Patents by Inventor Adrien P. Malick

Adrien P. Malick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220170065
    Abstract: Rapid methods that identify sepsis-causing bacteria or yeast aid the physician in critical therapeutic decision-making, thus decreasing patient mortality rates. The methods described herein employ plating microorganisms directly on to a MALDI-MS plate, adding concentrated formic acid, and identifying the microorganism by mass spectrometry. Optionally, an organic solvent may be combined with the formic acid, or added to the sample before or after the concentrated formic acid is added thereto. The methods enable direct extraction of proteins from microorganisms without the need for liquid protein extraction methods and yields positive identification results for gram-positive bacteria, gram-negative bacteria and yeast in minutes.
    Type: Application
    Filed: November 8, 2021
    Publication date: June 2, 2022
    Applicant: BECTON DICKINSON AND COMPANY
    Inventors: Liping Feng, William B. Brasso, Susan M. Kircher, Vanda White, Song Shi, Xiao Mo, Tuan-Linh Ngoc Nguyen, Adrien P. Malick, Jon E. Salomon, John D. Mantlo
  • Patent number: 11225681
    Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism(s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: January 18, 2022
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
  • Patent number: 11193158
    Abstract: Rapid methods that identify sepsis-causing bacteria or yeast aid the physician in critical therapeutic decision-making, thus decreasing patient mortality rates. The methods described herein employ plating microorganisms directly on to a MALDI-MS plate, adding concentrated formic acid, and identifying the microorganism by mass spectrometry. Optionally, an organic solvent may be combined with the formic acid, or added to the sample before or after the concentrated formic acid is added thereto. The methods enable direct extraction of proteins from microorganisms without the need for liquid protein extraction methods and yields positive identification results for gram-positive bacteria, gram-negative bacteria and yeast in minutes.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: December 7, 2021
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventors: Liping Feng, William B. Brasso, Susan M. Kircher, Vanda White, Song Shi, Xiao Mo, Tuan-Linh Ngoc Nguyen, Adrien P. Malick, Jon E. Salomon, John D. Mantlo
  • Publication number: 20200149085
    Abstract: Rapid methods that identify sepsis-causing bacteria or yeast aid the physician in critical therapeutic decision-making, thus decreasing patient mortality rates. The methods described herein employ plating microorganisms directly on to a MALDI-MS plate, adding concentrated formic acid, and identifying the microorganism by mass spectrometry. Optionally, an organic solvent may be combined with the formic acid, or added to the sample before or after the concentrated formic acid is added thereto. The methods enable direct extraction of proteins from microorganisms without the need for liquid protein extraction methods and yields positive identification results for gram-positive bacteria, gram-negative bacteria and yeast in minutes.
    Type: Application
    Filed: January 6, 2020
    Publication date: May 14, 2020
    Inventors: Liping Feng, William B. Brasso, Susan M. Kircher, Vanda White, Song Shi, Xiao Mo, Tuan-Linh Ngoc Nguyen, Adrien P. Malick, Jon E. Salomon, John D. Mantlo
  • Publication number: 20200087702
    Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism(s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 19, 2020
    Applicant: BECTON DICKINSON AND COMPANY
    Inventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
  • Patent number: 10557162
    Abstract: Rapid methods that identify sepsis-causing bacteria or yeast aid the physician in critical therapeutic decision-making, thus decreasing patient mortality rates. The methods described herein employ plating microorganisms directly on to a MALDI-MS plate, adding concentrated formic acid, and identifying the microorganism by mass spectrometry. Optionally, an organic solvent may be combined with the formic acid, or added to the sample before or after the concentrated formic acid is added thereto. The methods enable direct extraction of proteins from microorganisms without the need for liquid protein extraction methods and yields positive identification results for gram-positive bacteria, gram-negative bacteria and yeast in minutes.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: February 11, 2020
    Assignee: BECTON, DICKINSON AND COMPANY
    Inventors: Liping Feng, William B. Brasso, Susan M. Kircher, Vanda White, Song Shi, Xiao Mo, Tuan-Linh Ngoc Nguyen, Adrien P. Malick, Jon E. Salomon, John D. Mantlo
  • Patent number: 10519482
    Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism (s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: December 31, 2019
    Assignee: Becton, Dickinson And Company
    Inventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
  • Patent number: 9995745
    Abstract: Methods for producing a protein extract from cells, such as cells or cellular samples containing viral proteins, are provided. In general terms, the methods may involve: increasing the pH of the cells to a pH of at least about pH 10.0 to produce an intermediate composition, and then, in the presence of a non-ionic detergent such as a polyoxyethylene alkyl ether, neutralizing the pH of the intermediate composition to produce the protein extract. Such methods can be used in conjunction with methods for detecting one or more target proteins in a sample, such as viral proteins. Systems, kits and compositions for practicing the subject methods are also provided.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: June 12, 2018
    Assignees: Arbor Vita Corporation, Becton, Dickinson and Company
    Inventors: Adrien P. Malick, Virginia M. Crews, Julie L. Rosales, Carrie S. Ferguson, Jeff H. Bruton, Robert J. Beadenkopf, John Mantlo
  • Publication number: 20170204448
    Abstract: Rapid methods that identify sepsis-causing bacteria or yeast aid the physician in critical therapeutic decision-making, thus decreasing patient mortality rates. The methods described herein employ plating microorganisms directly on to a MALDI-MS plate, adding concentrated formic acid, and identifying the microorganism by mass spectrometry. Optionally, an organic solvent may be combined with the formic acid, or added to the sample before or after the concentrated formic acid is added thereto. The methods enable direct extraction of proteins from microorganisms without the need for liquid protein extraction methods and yields positive identification results for gram-positive bacteria, gram-negative bacteria and yeast in minutes.
    Type: Application
    Filed: March 29, 2017
    Publication date: July 20, 2017
    Inventors: Liping Feng, William B. Brasso, Susan M. Kircher, Vanda White, Song Shi, Xiao Mo, Tuan-Linh Ngoc Nguyen, Adrien P. Malick, Jon E. Salomon, John D. Mantlo, Mary R. Votta, Ben Turng, Donald R. Callihan, Wendy Louise Williams
  • Publication number: 20160216258
    Abstract: Methods for producing a protein extract from cells, such as cells or cellular samples containing viral proteins, are provided. In general terms, the methods may involve: increasing the pH of the cells to a pH of at least about pH 10.0 to produce an intermediate composition, and then, in the presence of a non-ionic detergent such as a polyoxyethylene alkyl ether, neutralizing the pH of the intermediate composition to produce the protein extract. Such methods can be used in conjunction with methods for detecting one or more target proteins in a sample, such as viral proteins. Systems, kits and compositions for practicing the subject methods are also provided.
    Type: Application
    Filed: November 4, 2015
    Publication date: July 28, 2016
    Inventors: Adrien P. Malick, Virginia M. Crews, Julie L. Rosales, Carrie S. Ferguson, Jeff H. Bruton, Robert J. Beadenkopf, John Mantlo
  • Patent number: 9207240
    Abstract: Methods for producing a protein extract from cells, such as cells or cellular samples containing viral proteins, are provided. In general terms, the methods may involve: increasing the pH of the cells to a pH of at least about pH 10.0 to produce an intermediate composition, and then, in the presence of a non-ionic detergent such as a polyoxyethylene alkyl ether, neutralizing the pH of the intermediate composition to produce the protein extract. Such methods can be used in conjunction with methods for detecting one or more target proteins in a sample, such as viral proteins. Systems, kits and compositions for practicing the subject methods are also provided.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: December 8, 2015
    Assignee: ARBOR VITA CORPORATION
    Inventors: Adrien P. Malick, Virginia M. Crews, Julie L. Rosales, Carrie S. Ferguson, Jeff H. Bruton, Robert J. Beadenkopf, John Mantlo
  • Publication number: 20150125895
    Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism (s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.
    Type: Application
    Filed: February 28, 2013
    Publication date: May 7, 2015
    Applicant: Becton, Dickinson and Company
    Inventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
  • Publication number: 20090123910
    Abstract: Methods for producing a protein extract from cells, such as cells or cellular samples containing viral proteins, are provided. In general terms, the methods may involve: increasing the pH of the cells to a pH of at least about pH 10.0 to produce an intermediate composition, and then, in the presence of a non-ionic detergent such as a polyoxyethylene alkyl ether, neutralizing the pH of the intermediate composition to produce the protein extract. Such methods can be used in conjunction with methods for detecting one or more target proteins in a sample, such as viral proteins. Systems, kits and compositions for practicing the subject methods are also provided.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 14, 2009
    Inventors: Adrien P. Malick, Virginia M. Crews, Julie L. Rosales, Carrie S. Ferguson, Jeff H. Bruton, Robert J. Beadenkopf
  • Patent number: 5834217
    Abstract: A patient's health may be diagnosed by centrifuging blood samples in a transparent tube, which tube contains one or more bodies or groups of bodies such as floats, inserts, liposomes, or plastic beads of different densities. Each density-defined body carries analyte-capture binding materials such as antigens or antibodies, which are specific to an epitope, or other specific high affinity binding site on a target analyte which target analyte may be in the blood or other sample being tested; and the level of which analyte is indicative of the patient's health. At least one labeled binding material which is also specific to an epitope, or other specific high affinity binding site on the target analyte is added to the sample so as to form labeled binding material/analyte/body complexes in the sample.
    Type: Grant
    Filed: December 11, 1996
    Date of Patent: November 10, 1998
    Assignee: Becton Dickinson and Co.
    Inventors: Robert A. Levine, Stephen C. Wardlaw, Leon W. M. M. Terstappen, Kristen L. Manion, Rodolfo R. Rodriguez, Adrien P. Malick, Subhash Dhanesar, Stephen J. Lovell, Alvydas J. Ozinskas
  • Patent number: 5776710
    Abstract: A patient's health may be diagnosed by centrifuging blood samples in a transparent tube, which tube contains one or more bodies or groups of bodies such as floats, inserts, liposomes, or plastic beads of different densities. Each density-defined body carries analyte-capture binding materials such as antigens or antibodies, which are specific to an epitope, or other specific high affinity binding site on a target analyte which target analyte may be in the blood or other sample being tested; and the level of which analyte is indicative of the patient's health. At least one labeled binding material which is also specific to an epitope, or other specific high affinity binding site on the target analyte is added to the sample so as to form labeled binding material/analyte/body complexes in the sample.
    Type: Grant
    Filed: December 23, 1996
    Date of Patent: July 7, 1998
    Assignee: Becton Dickinson and Co.
    Inventors: Robert A. Levine, Stephen C. Wardlaw, Leon W. M. M. Terstappen, Kristen L. Manion, Rodolfo R. Rodriguez, Adrien P. Malick, Subhash Dhanesar, Stephen J. Lovell, Alvydas J. Ozinskas
  • Patent number: 5635362
    Abstract: A patient's health may be diagnosed by centrifuging blood samples in a transparent tube, which tube contains one or more bodies or groups of bodies such as floats, inserts, liposomes, or plastic beads of different densities. Each density-defined body carries analyte-capture binding materials such as antigens or antibodies, which are specific to an epitope, or other specific high affinity binding site on a target analyte which target analyte may be in the blood or other sample being tested; and the level of which analyte is indicative of the patient's health. At least one labeled binding material which is also specific to an epitope, or other specific high affinity binding site on the target analyte is added to the sample so as to form labeled binding material/analyte/body complexes in the sample.
    Type: Grant
    Filed: May 23, 1994
    Date of Patent: June 3, 1997
    Assignee: Becton Dickinson and Co.
    Inventors: Robert A. Levine, Stephen C. Wardlaw, Rodolfo R. Rodriguez, Adrien P. Malick, Alvydas J. Ozinskas
  • Patent number: 5108916
    Abstract: An immobilized isozyme of Lipase MY or AY from Candida rugosa is used for stereoselectively hydrolyzing racemic mixtures of esters of 2-substituted acids, other than 2-halo propionic acids, transesterifying esters or acids or esterify acids or alcohols, at high enantiomeric excess, in an organic solvent. Immobilization of the isozyme may be carried out in the presence of an organic acid such as stearic acid. The immobilized isozyme may be used with a fatty acid or fatty acid ester that increases stereoselectivity or rate of hydrolysis of a mixture of racemic esters.
    Type: Grant
    Filed: June 5, 1989
    Date of Patent: April 28, 1992
    Assignee: Rhone-Poulenc Rorer, S.A.
    Inventors: Carrington S. Cobbs, Michael J. Barton, Lin Peng, Animesh Goswami, Adrien P. Malick, John P. Hamman, Gary J. Calton