Patents by Inventor Adrien P. Malick
Adrien P. Malick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20220170065Abstract: Rapid methods that identify sepsis-causing bacteria or yeast aid the physician in critical therapeutic decision-making, thus decreasing patient mortality rates. The methods described herein employ plating microorganisms directly on to a MALDI-MS plate, adding concentrated formic acid, and identifying the microorganism by mass spectrometry. Optionally, an organic solvent may be combined with the formic acid, or added to the sample before or after the concentrated formic acid is added thereto. The methods enable direct extraction of proteins from microorganisms without the need for liquid protein extraction methods and yields positive identification results for gram-positive bacteria, gram-negative bacteria and yeast in minutes.Type: ApplicationFiled: November 8, 2021Publication date: June 2, 2022Applicant: BECTON DICKINSON AND COMPANYInventors: Liping Feng, William B. Brasso, Susan M. Kircher, Vanda White, Song Shi, Xiao Mo, Tuan-Linh Ngoc Nguyen, Adrien P. Malick, Jon E. Salomon, John D. Mantlo
-
Patent number: 11225681Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism(s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.Type: GrantFiled: November 7, 2019Date of Patent: January 18, 2022Assignee: BECTON, DICKINSON AND COMPANYInventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
-
Patent number: 11193158Abstract: Rapid methods that identify sepsis-causing bacteria or yeast aid the physician in critical therapeutic decision-making, thus decreasing patient mortality rates. The methods described herein employ plating microorganisms directly on to a MALDI-MS plate, adding concentrated formic acid, and identifying the microorganism by mass spectrometry. Optionally, an organic solvent may be combined with the formic acid, or added to the sample before or after the concentrated formic acid is added thereto. The methods enable direct extraction of proteins from microorganisms without the need for liquid protein extraction methods and yields positive identification results for gram-positive bacteria, gram-negative bacteria and yeast in minutes.Type: GrantFiled: January 6, 2020Date of Patent: December 7, 2021Assignee: BECTON, DICKINSON AND COMPANYInventors: Liping Feng, William B. Brasso, Susan M. Kircher, Vanda White, Song Shi, Xiao Mo, Tuan-Linh Ngoc Nguyen, Adrien P. Malick, Jon E. Salomon, John D. Mantlo
-
Publication number: 20200149085Abstract: Rapid methods that identify sepsis-causing bacteria or yeast aid the physician in critical therapeutic decision-making, thus decreasing patient mortality rates. The methods described herein employ plating microorganisms directly on to a MALDI-MS plate, adding concentrated formic acid, and identifying the microorganism by mass spectrometry. Optionally, an organic solvent may be combined with the formic acid, or added to the sample before or after the concentrated formic acid is added thereto. The methods enable direct extraction of proteins from microorganisms without the need for liquid protein extraction methods and yields positive identification results for gram-positive bacteria, gram-negative bacteria and yeast in minutes.Type: ApplicationFiled: January 6, 2020Publication date: May 14, 2020Inventors: Liping Feng, William B. Brasso, Susan M. Kircher, Vanda White, Song Shi, Xiao Mo, Tuan-Linh Ngoc Nguyen, Adrien P. Malick, Jon E. Salomon, John D. Mantlo
-
Publication number: 20200087702Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism(s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.Type: ApplicationFiled: November 7, 2019Publication date: March 19, 2020Applicant: BECTON DICKINSON AND COMPANYInventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
-
Patent number: 10557162Abstract: Rapid methods that identify sepsis-causing bacteria or yeast aid the physician in critical therapeutic decision-making, thus decreasing patient mortality rates. The methods described herein employ plating microorganisms directly on to a MALDI-MS plate, adding concentrated formic acid, and identifying the microorganism by mass spectrometry. Optionally, an organic solvent may be combined with the formic acid, or added to the sample before or after the concentrated formic acid is added thereto. The methods enable direct extraction of proteins from microorganisms without the need for liquid protein extraction methods and yields positive identification results for gram-positive bacteria, gram-negative bacteria and yeast in minutes.Type: GrantFiled: March 29, 2017Date of Patent: February 11, 2020Assignee: BECTON, DICKINSON AND COMPANYInventors: Liping Feng, William B. Brasso, Susan M. Kircher, Vanda White, Song Shi, Xiao Mo, Tuan-Linh Ngoc Nguyen, Adrien P. Malick, Jon E. Salomon, John D. Mantlo
-
Patent number: 10519482Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism (s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.Type: GrantFiled: February 28, 2013Date of Patent: December 31, 2019Assignee: Becton, Dickinson And CompanyInventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
-
Patent number: 9995745Abstract: Methods for producing a protein extract from cells, such as cells or cellular samples containing viral proteins, are provided. In general terms, the methods may involve: increasing the pH of the cells to a pH of at least about pH 10.0 to produce an intermediate composition, and then, in the presence of a non-ionic detergent such as a polyoxyethylene alkyl ether, neutralizing the pH of the intermediate composition to produce the protein extract. Such methods can be used in conjunction with methods for detecting one or more target proteins in a sample, such as viral proteins. Systems, kits and compositions for practicing the subject methods are also provided.Type: GrantFiled: November 4, 2015Date of Patent: June 12, 2018Assignees: Arbor Vita Corporation, Becton, Dickinson and CompanyInventors: Adrien P. Malick, Virginia M. Crews, Julie L. Rosales, Carrie S. Ferguson, Jeff H. Bruton, Robert J. Beadenkopf, John Mantlo
-
Publication number: 20170204448Abstract: Rapid methods that identify sepsis-causing bacteria or yeast aid the physician in critical therapeutic decision-making, thus decreasing patient mortality rates. The methods described herein employ plating microorganisms directly on to a MALDI-MS plate, adding concentrated formic acid, and identifying the microorganism by mass spectrometry. Optionally, an organic solvent may be combined with the formic acid, or added to the sample before or after the concentrated formic acid is added thereto. The methods enable direct extraction of proteins from microorganisms without the need for liquid protein extraction methods and yields positive identification results for gram-positive bacteria, gram-negative bacteria and yeast in minutes.Type: ApplicationFiled: March 29, 2017Publication date: July 20, 2017Inventors: Liping Feng, William B. Brasso, Susan M. Kircher, Vanda White, Song Shi, Xiao Mo, Tuan-Linh Ngoc Nguyen, Adrien P. Malick, Jon E. Salomon, John D. Mantlo, Mary R. Votta, Ben Turng, Donald R. Callihan, Wendy Louise Williams
-
Publication number: 20160216258Abstract: Methods for producing a protein extract from cells, such as cells or cellular samples containing viral proteins, are provided. In general terms, the methods may involve: increasing the pH of the cells to a pH of at least about pH 10.0 to produce an intermediate composition, and then, in the presence of a non-ionic detergent such as a polyoxyethylene alkyl ether, neutralizing the pH of the intermediate composition to produce the protein extract. Such methods can be used in conjunction with methods for detecting one or more target proteins in a sample, such as viral proteins. Systems, kits and compositions for practicing the subject methods are also provided.Type: ApplicationFiled: November 4, 2015Publication date: July 28, 2016Inventors: Adrien P. Malick, Virginia M. Crews, Julie L. Rosales, Carrie S. Ferguson, Jeff H. Bruton, Robert J. Beadenkopf, John Mantlo
-
Patent number: 9207240Abstract: Methods for producing a protein extract from cells, such as cells or cellular samples containing viral proteins, are provided. In general terms, the methods may involve: increasing the pH of the cells to a pH of at least about pH 10.0 to produce an intermediate composition, and then, in the presence of a non-ionic detergent such as a polyoxyethylene alkyl ether, neutralizing the pH of the intermediate composition to produce the protein extract. Such methods can be used in conjunction with methods for detecting one or more target proteins in a sample, such as viral proteins. Systems, kits and compositions for practicing the subject methods are also provided.Type: GrantFiled: November 14, 2007Date of Patent: December 8, 2015Assignee: ARBOR VITA CORPORATIONInventors: Adrien P. Malick, Virginia M. Crews, Julie L. Rosales, Carrie S. Ferguson, Jeff H. Bruton, Robert J. Beadenkopf, John Mantlo
-
Publication number: 20150125895Abstract: Various embodiments disclosed herein provide for reagents and methods for rapidly isolating viable microbial cells, including S. pneumoniae, from positive blood culture samples. The resulting microbial pellet can be used for both identification and growth-based methods such as antimicrobial susceptibility testing. The buffers described herein may contain a base solution, non-ionic detergents, thiols, and optionally, ammonium chloride. The disclosed methods provide a process for rapidly isolating and concentrating viable microorganism (s) from PBC samples using only one sample preparation tube and centrifugation while removing cellular debris from the mammalian blood cells that may interfere with identification methods.Type: ApplicationFiled: February 28, 2013Publication date: May 7, 2015Applicant: Becton, Dickinson and CompanyInventors: Susan M. Kircher, Vanda White, William B. Brasso, Dyan Luper, James Y. Zhou, Julie L. Rosales, Jeffery H. Bruton, John D. Mantlo, Adrien P. Malick, Donald R. Callihan, Ben Turng, Liping Feng, Curtis M. Gosnell, Patrick Shawn Beaty, John P. Douglass
-
Publication number: 20090123910Abstract: Methods for producing a protein extract from cells, such as cells or cellular samples containing viral proteins, are provided. In general terms, the methods may involve: increasing the pH of the cells to a pH of at least about pH 10.0 to produce an intermediate composition, and then, in the presence of a non-ionic detergent such as a polyoxyethylene alkyl ether, neutralizing the pH of the intermediate composition to produce the protein extract. Such methods can be used in conjunction with methods for detecting one or more target proteins in a sample, such as viral proteins. Systems, kits and compositions for practicing the subject methods are also provided.Type: ApplicationFiled: November 14, 2007Publication date: May 14, 2009Inventors: Adrien P. Malick, Virginia M. Crews, Julie L. Rosales, Carrie S. Ferguson, Jeff H. Bruton, Robert J. Beadenkopf
-
Patent number: 5834217Abstract: A patient's health may be diagnosed by centrifuging blood samples in a transparent tube, which tube contains one or more bodies or groups of bodies such as floats, inserts, liposomes, or plastic beads of different densities. Each density-defined body carries analyte-capture binding materials such as antigens or antibodies, which are specific to an epitope, or other specific high affinity binding site on a target analyte which target analyte may be in the blood or other sample being tested; and the level of which analyte is indicative of the patient's health. At least one labeled binding material which is also specific to an epitope, or other specific high affinity binding site on the target analyte is added to the sample so as to form labeled binding material/analyte/body complexes in the sample.Type: GrantFiled: December 11, 1996Date of Patent: November 10, 1998Assignee: Becton Dickinson and Co.Inventors: Robert A. Levine, Stephen C. Wardlaw, Leon W. M. M. Terstappen, Kristen L. Manion, Rodolfo R. Rodriguez, Adrien P. Malick, Subhash Dhanesar, Stephen J. Lovell, Alvydas J. Ozinskas
-
Patent number: 5776710Abstract: A patient's health may be diagnosed by centrifuging blood samples in a transparent tube, which tube contains one or more bodies or groups of bodies such as floats, inserts, liposomes, or plastic beads of different densities. Each density-defined body carries analyte-capture binding materials such as antigens or antibodies, which are specific to an epitope, or other specific high affinity binding site on a target analyte which target analyte may be in the blood or other sample being tested; and the level of which analyte is indicative of the patient's health. At least one labeled binding material which is also specific to an epitope, or other specific high affinity binding site on the target analyte is added to the sample so as to form labeled binding material/analyte/body complexes in the sample.Type: GrantFiled: December 23, 1996Date of Patent: July 7, 1998Assignee: Becton Dickinson and Co.Inventors: Robert A. Levine, Stephen C. Wardlaw, Leon W. M. M. Terstappen, Kristen L. Manion, Rodolfo R. Rodriguez, Adrien P. Malick, Subhash Dhanesar, Stephen J. Lovell, Alvydas J. Ozinskas
-
Patent number: 5635362Abstract: A patient's health may be diagnosed by centrifuging blood samples in a transparent tube, which tube contains one or more bodies or groups of bodies such as floats, inserts, liposomes, or plastic beads of different densities. Each density-defined body carries analyte-capture binding materials such as antigens or antibodies, which are specific to an epitope, or other specific high affinity binding site on a target analyte which target analyte may be in the blood or other sample being tested; and the level of which analyte is indicative of the patient's health. At least one labeled binding material which is also specific to an epitope, or other specific high affinity binding site on the target analyte is added to the sample so as to form labeled binding material/analyte/body complexes in the sample.Type: GrantFiled: May 23, 1994Date of Patent: June 3, 1997Assignee: Becton Dickinson and Co.Inventors: Robert A. Levine, Stephen C. Wardlaw, Rodolfo R. Rodriguez, Adrien P. Malick, Alvydas J. Ozinskas
-
Patent number: 5108916Abstract: An immobilized isozyme of Lipase MY or AY from Candida rugosa is used for stereoselectively hydrolyzing racemic mixtures of esters of 2-substituted acids, other than 2-halo propionic acids, transesterifying esters or acids or esterify acids or alcohols, at high enantiomeric excess, in an organic solvent. Immobilization of the isozyme may be carried out in the presence of an organic acid such as stearic acid. The immobilized isozyme may be used with a fatty acid or fatty acid ester that increases stereoselectivity or rate of hydrolysis of a mixture of racemic esters.Type: GrantFiled: June 5, 1989Date of Patent: April 28, 1992Assignee: Rhone-Poulenc Rorer, S.A.Inventors: Carrington S. Cobbs, Michael J. Barton, Lin Peng, Animesh Goswami, Adrien P. Malick, John P. Hamman, Gary J. Calton