Patents by Inventor Adwait Purandare

Adwait Purandare has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240111531
    Abstract: Methods for frequency scaling for per-core accelerator assignments and associated apparatus. A processor includes a CPU (central processing unit) having multiple cores that can be selectively configured to support frequency scaling and instruction extensions. Under this approach, some cores can be configured to support a selective set of AVX instructions (such as AVX3/5G-ISA instructions) and/or AMX instructions, while other cores are configured to not support these AVX/AMX instructions. In one aspect, the selective AVX/AMX instructions are implemented in one or more ISA extension units that are separate from the main processor core (or otherwise comprises a separate block of circuitry in a processor core) that can be selectively enabled or disabled. This enables cores having the separate unit(s) disabled to consume less power and/or operate at higher frequencies, while supporting the selective AVX/AMX instructions using other cores.
    Type: Application
    Filed: September 15, 2023
    Publication date: April 4, 2024
    Inventors: Stephen T. PALERMO, Srihari MAKINENI, Shubha BOMMALINGAIAHNAPALLYA, Neelam CHANDWANI, Rany T. ELSAYED, Udayan MUKHERJEE, Lokpraveen MOSUR, Adwait PURANDARE
  • Publication number: 20240028101
    Abstract: In one embodiment, a processor includes a plurality of intellectual property (IP) circuits, each to execute instructions and including a local control circuit to enable the IP circuit to operate at a level above a local current budget for the IP circuit, unless the processor is undergoing a global violation. The processor may further include a power controller coupled to the plurality of IP circuits. The power controller may include a control circuit to receive request information from the plurality of IP circuits and, based at least in part on the request information, determine that the processor is undergoing the global violation when a global current budget is exceeded. Other embodiments are described and claimed.
    Type: Application
    Filed: September 29, 2023
    Publication date: January 25, 2024
    Inventors: Jianwei Dai, David Pawlowski, Adwait Purandare, Ankush Varma
  • Patent number: 11853144
    Abstract: In one embodiment, a processor includes a plurality of intellectual property (IP) circuits, each to execute instructions and including a local control circuit to enable the IP circuit to operate at a level above a local current budget for the IP circuit, unless the processor is undergoing a global violation. The processor may further include a power controller coupled to the plurality of IP circuits. The power controller may include a control circuit to receive request information from the plurality of IP circuits and, based at least in part on the request information, determine that the processor is undergoing the global violation when a global current budget is exceeded. Other embodiments are described and claimed.
    Type: Grant
    Filed: May 19, 2022
    Date of Patent: December 26, 2023
    Assignee: Intel Corporation
    Inventors: Jianwei Dai, David Pawlowski, Adwait Purandare, Ankush Varma
  • Patent number: 11775298
    Abstract: Methods for frequency scaling for per-core accelerator assignments and associated apparatus. A processor includes a CPU (central processing unit) having multiple cores that can be selectively configured to support frequency scaling and instruction extensions. Under this approach, some cores can be configured to support a selective set of AVX instructions (such as AVX3/5G-ISA instructions) and/or AMX instructions, while other cores are configured to not support these AVX/AMX instructions. In one aspect, the selective AVX/AMX instructions are implemented in one or more ISA extension units that are separate from the main processor core (or otherwise comprises a separate block of circuitry in a processor core) that can be selectively enabled or disabled. This enables cores having the separate unit(s) disabled to consume less power and/or operate at higher frequencies, while supporting the selective AVX/AMX instructions using other cores.
    Type: Grant
    Filed: July 20, 2020
    Date of Patent: October 3, 2023
    Assignee: Intel Corporation
    Inventors: Stephen T. Palermo, Srihari Makineni, Shubha Bommalingaiahnapallya, Neelam Chandwani, Rany T. Elsayed, Udayan Mukherjee, Lokpraveen Mosur, Adwait Purandare
  • Publication number: 20230148150
    Abstract: In one embodiment, a processor includes a plurality of intellectual property (IP) circuits, each to execute instructions and including a local control circuit to enable the IP circuit to operate at a level above a local current budget for the IP circuit, unless the processor is undergoing a global violation. The processor may further include a power controller coupled to the plurality of IP circuits. The power controller may include a control circuit to receive request information from the plurality of IP circuits and, based at least in part on the request information, determine that the processor is undergoing the global violation when a global current budget is exceeded. Other embodiments are described and claimed.
    Type: Application
    Filed: May 19, 2022
    Publication date: May 11, 2023
    Inventors: Jianwei Dai, David Pawlowski, Adwait Purandare, Ankush Varma
  • Patent number: 11543878
    Abstract: A local power control arbiter is provided to interface with a global power control unit of a processing platform having a plurality of processing entities. The local power control arbiter controls a local processing unit of the processing platform. The local power arbiter has an interface to receive from the global power control unit, a local performance limit allocated to the local processing unit depending on a global power control evaluation and processing circuitry to determine any change to one or more processing conditions prevailing in the local processing unit on a timescale shorter than a duration for which the local performance limit is applied to the local processing unit by the global power control unit and to select a performance level for the local processing unit depending on both the local performance limit and the determined change, if any, to the prevailing processing conditions on the local processing unit.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: January 3, 2023
    Assignee: Intel Corporation
    Inventors: Efraim Rotem, Eliezer Weissmann, Eric Dehaemer, Alexander Gendler, Nadav Shulman, Krishnakanth Sistla, Nir Rosenzweig, Ankush Varma, Ariel Szapiro, Arye Albahari, Ido Melamed, Nir Misgav, Vivek Garg, Nimrod Angel, Adwait Purandare, Elkana Korem
  • Publication number: 20220413591
    Abstract: A hardware controller within a core of a processor is described. The hardware controller includes telemetry logic to generate telemetry data that indicates an activity state of the core; core stall detection logic to determine, based on the telemetry data from the telemetry logic, whether the core is in an idle loop state; and a power controller that, in response to the core stall detection logic determining that the core is in the idle loop state, is to decrease a power mode of the core from a first power mode associated with a first set of power settings to a second power mode associated with a second set of power settings.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Applicant: Intel Corporation
    Inventors: Pritesh P. SHAH, Suresh CHEMUDUPATI, Alexander GENDLER, David HUNT, Christopher M. MACNAMARA, Ofer NATHAN, Adwait PURANDARE, Ankush VARMA
  • Publication number: 20220413720
    Abstract: In an embodiment, a processor includes multiple processing engines and a power control unit. The power control unit is to receive a mapping of multiple virtual partitions to sets of the processing engines, and in response to a receipt of the mapping of multiple of virtual partitions: access a power limit table for the processor, and generate multiple virtual partition power limit tables based on the power limit table for the processor, where each virtual partition power limit table is associated with a different virtual partition. Other embodiments are described and claimed.
    Type: Application
    Filed: June 25, 2021
    Publication date: December 29, 2022
    Inventors: Adwait Purandare, Ian Steiner, Vasudevan Srinivasan, Ankush Varma, Nikhil Gupta, Stanley Chen
  • Patent number: 11366506
    Abstract: In one embodiment, a processor includes a plurality of intellectual property (IP) circuits, each to execute instructions and including a local control circuit to enable the IP circuit to operate at a level above a local current budget for the IP circuit, unless the processor is undergoing a global violation. The processor may further include a power controller coupled to the plurality of IP circuits. The power controller may include a control circuit to receive request information from the plurality of IP circuits and, based at least in part on the request information, determine that the processor is undergoing the global violation when a global current budget is exceeded. Other embodiments are described and claimed.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: June 21, 2022
    Assignee: Intel Corporation
    Inventors: Jianwei Dai, David Pawlowski, Adwait Purandare, Ankush Varma
  • Publication number: 20220100247
    Abstract: Hierarchical Power Management (HPM) architecture considers the limits of scaling on a power management controller, the autonomy at each die, and provides a unified view of the package to a platform. At a simplest level, HPM architecture has a supervisor and one or more supervisee power management units (PMUs) that communicate via at least two different communication fabrics. Each PMU can behave as a supervisor for a number of supervisee PMUs in a particular domain. HPM addresses these needs for products that comprise a collection of dice with varying levels of power and thermal management capabilities and needs. HPM serves as a unified mechanism than can span collection of dice of varying capability and function, which together form a traditional system-on-chip (SoC). HPM provides a basis for managing power and thermals across a diverse set of dice.
    Type: Application
    Filed: September 26, 2020
    Publication date: March 31, 2022
    Applicant: Intel Corporation
    Inventors: Vivek Garg, Ankush Varma, Krishnakanth Sistla, Nikhil Gupta, Nikethan Shivanand Baligar, Stephen Wang, Nilanjan Palit, Timothy Kam, Adwait Purandare, Ujjwal Gupta, Stanley Chen, Dorit Shapira, Shruthi Venugopal, Suresh Chemudupati, Rupal Parikh, Eric Dehaemer, Pavithra Sampath, Phani Kumar Kandula, Yogesh Bansal, Dean Mulla, Michael Tulanowski, Stephen Haake, Andrew Herdrich, Ripan Das
  • Publication number: 20210334101
    Abstract: Methods for frequency scaling for per-core accelerator assignments and associated apparatus. A processor includes a CPU (central processing unit) having multiple cores that can be selectively configured to support frequency scaling and instruction extensions. Under this approach, some cores can be configured to support a selective set of AVX instructions (such as AVX3/5G-ISA instructions) and/or AMX instructions, while other cores are configured to not support these AVX/AMX instructions. In one aspect, the selective AVX/AMX instructions are implemented in one or more ISA extension units that are separate from the main processor core (or otherwise comprises a separate block of circuitry in a processor core) that can be selectively enabled or disabled. This enables cores having the separate unit(s) disabled to consume less power and/or operate at higher frequencies, while supporting the selective AVX/AMX instructions using other cores.
    Type: Application
    Filed: July 20, 2020
    Publication date: October 28, 2021
    Inventors: Stephen T. Palermo, Srihari Makineni, Shubha Bommalingaiahnapallya, Neelam Chandwani, Rany T. Elsayed, Udayan Mukherjee, Lokpraveen Mosur, Adwait Purandare
  • Publication number: 20210208659
    Abstract: An adaptive or dynamic power virus control scheme (hardware and/or software) that dynamically adjusts maximum dynamic capacitance (CdynMax) and corresponding maximum frequency (POnMax) setting per application executed on a processor core. A power management unit monitors telemetry such as a number of throttled cycles due to CdynMax threshold excursions cycles for the processor core and a cost of average cycle Cdyn cost for the processor core. As the number of throttling cycles increases for the processor core, the aCode firmware of the power management unit decides to increase the Cdyn level or threshold for that core (e.g., to make the threshold less aggressive). As the average Cdyn cost over a number of cycles becomes lower than a threshold, aCode adjusts the threshold to a lower threshold (e.g., more aggressive threshold) and lower Cdyn.
    Type: Application
    Filed: March 19, 2021
    Publication date: July 8, 2021
    Applicant: Intel Corporation
    Inventors: Alexander Gendler, Adwait Purandare, Ankush Varma, Nazar Haider, Daniela Kaufman, Gilad Bomstein, Shlomo Attias, Amit Gabai, Ariel Szapiro
  • Publication number: 20210018971
    Abstract: A local power control arbiter is provided to interface with a global power control unit of a processing platform having a plurality of processing entities. The local power control arbiter controls a local processing unit of the processing platform. The local power arbiter has an interface to receive from the global power control unit, a local performance limit allocated to the local processing unit depending on a global power control evaluation and processing circuitry to determine any change to one or more processing conditions prevailing in the local processing unit on a timescale shorter than a duration for which the local performance limit is applied to the local processing unit by the global power control unit and to select a performance level for the local processing unit depending on both the local performance limit and the determined change, if any, to the prevailing processing conditions on the local processing unit.
    Type: Application
    Filed: May 1, 2018
    Publication date: January 21, 2021
    Inventors: EFRAIM ROTEM, ELIEZER WEISSMANN, ERIC DEHAEMER, ALEXANDER GENDLER, NADAV SHULMAN, KRISHNAKANTH SISTLA, NIR ROSENZWEIG, ANKUSH VARMA, ARIEL SZAPIRO, ARYE ALBAHARI, IDO MELAMED, NIR MISGAV, VIVEK GARG, NIMROD ANGEL, ADWAIT PURANDARE, ELKANA KOREM
  • Publication number: 20200089308
    Abstract: In one embodiment, a processor includes a plurality of intellectual property (IP) circuits, each to execute instructions and including a local control circuit to enable the IP circuit to operate at a level above a local current budget for the IP circuit, unless the processor is undergoing a global violation. The processor may further include a power controller coupled to the plurality of IP circuits. The power controller may include a control circuit to receive request information from the plurality of IP circuits and, based at least in part on the request information, determine that the processor is undergoing the global violation when a global current budget is exceeded. Other embodiments are described and claimed.
    Type: Application
    Filed: November 22, 2019
    Publication date: March 19, 2020
    Inventors: Jianwei Dai, David Pawlowski, Adwait Purandare, Ankush Varma