Patents by Inventor Agnes Gouble

Agnes Gouble has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11891614
    Abstract: Methods for developing engineered T-cells for immunotherapy that are both non-alloreactive and resistant to immunosuppressive drugs. The present invention relates to methods for modifying T-cells by inactivating both genes encoding target for an immunosuppressive agent and T-cell receptor, in particular genes encoding CD52 and TCR. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: May 17, 2020
    Date of Patent: February 6, 2024
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Patent number: 11767512
    Abstract: The invention pertains to the field of cell therapy and HIV treatments. It provides with highly specific reagents for reducing or inactivating expression of CCR5 in primate and human primary cells, especially under the form of TALE-nucleases. These reagents allow the production of safer primary hematopoietic cells made resistant to HIV, stem cells or differentiated cells, for their infusion into HIV patients.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: September 26, 2023
    Assignees: CELLECTIS, ALBERT-LUDWIGS-UNIVERSITAT FREIBURG
    Inventors: Toni Cathomen, Tatjana Cornu, Philippe Duchateau, Claudio Mussolino, Marianna Romito, Agnes Gouble
  • Publication number: 20230201260
    Abstract: The present invention relates to methods for developing engineered T-cells for immunotherapy that are non-alloreactive. The present invention relates to methods for modifying T-cells by inactivating both genes encoding T-cell receptor and an immune checkpoint gene to unleash the potential of the immune response. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: November 17, 2022
    Publication date: June 29, 2023
    Applicant: CELLECTIS
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cécile SCHIFFER-MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 11603539
    Abstract: Methods for developing engineered T-cells for immunotherapy that are both non-alloreactive and resistant to immunosuppressive drugs. The present invention relates to methods for modifying T-cells by inactivating both genes encoding target for an immunosuppressive agent and T-cell receptor, in particular genes encoding CD52 and TCR. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: March 14, 2023
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnès Gouble, Stéphanie Grosse, Cécile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Publication number: 20230056268
    Abstract: The present invention relates to methods for developing engineered T-cells for immunotherapy and more specifically to methods for modifying T-cells by inactivating at immune checkpoint genes, preferably at least two selected from different pathways, to increase T-cell immune activity This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to highly efficient adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: April 8, 2022
    Publication date: February 23, 2023
    Applicant: CELLECTIS
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cécile SCHIFFER-MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Publication number: 20230050345
    Abstract: The present invention relates to methods for developing engineered T-cells for immunotherapy that are non-alloreactive. The present invention relates to methods for modifying T-cells by inactivating both genes encoding T-cell receptor and an immune checkpoint gene to unleash the potential of the immune response. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: April 7, 2022
    Publication date: February 16, 2023
    Applicant: CELLECTIS
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cécile SCHIFFER-MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Publication number: 20220348955
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: June 24, 2022
    Publication date: November 3, 2022
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 11414674
    Abstract: A method of expanding deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: August 16, 2022
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Publication number: 20220177914
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: February 17, 2022
    Publication date: June 9, 2022
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 11311575
    Abstract: The present invention relates to methods for developing engineered T-cells for immunotherapy and more specifically to methods for modifying T-cells by inactivating at immune checkpoint genes, preferably at least two selected from different pathways, to increase T-cell immune activity. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to highly efficient adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: April 26, 2022
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cécile Schiffer-Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Patent number: 11304975
    Abstract: The present invention relates to methods for developing engineered T-cells for immunotherapy that are non-alloreactive. The present invention relates to methods for modifying T-cells by inactivating both genes encoding T-cell receptor and an immune checkpoint gene to unleash the potential of the immune response. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: May 13, 2014
    Date of Patent: April 19, 2022
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cécile Schiffer-Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Patent number: 11274316
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: March 15, 2022
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Publication number: 20210220405
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 22, 2021
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Publication number: 20200392459
    Abstract: The invention pertains to the field of cell therapy and HIV treatments. It provides with highly specific reagents for reducing or inactivating expression of CCR5 in primate and human primary cells, especially under the form of TALE-nucleases. These reagents allow the production of safer primary hematopoietic cells made resistant to HIV, stem cells or differentiated cells, for their infusion into HIV patients.
    Type: Application
    Filed: April 13, 2018
    Publication date: December 17, 2020
    Inventors: Toni CATHOMEN, Tatjana CORNU, Philippe DUCHATEAU, Claudio MUSSOLINO, Marianna ROMITO, Agnes GOUBLE
  • Publication number: 20200281979
    Abstract: Methods for developing engineered T-cells for immunotherapy that are both non-alloreactive and resistant to immunosuppressive drugs. The present invention relates to methods for modifying T-cells by inactivating both genes encoding target for an immunosuppressive agent and T-cell receptor, in particular genes encoding CD52 and TCR. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: May 17, 2020
    Publication date: September 10, 2020
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Patent number: 10517896
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: December 31, 2019
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Patent number: 10426795
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: May 13, 2013
    Date of Patent: October 1, 2019
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Patent number: 10363270
    Abstract: Methods for developing engineered T-cells for immunotherapy that are both non-alloreactive and resistant to immunosuppressive drugs. The present invention relates to methods for modifying T-cells by inactivating both genes encoding target for an immunosuppressive agent and T-cell receptor, in particular genes encoding CD52 and TCR. This method involves the use of specific rare cutting endonucleases, in particular TALE-nucleases (TAL effector endonuclease) and polynucleotides encoding such polypeptides, to precisely target a selection of key genes in T-cells, which are available from donors or from culture of primary cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: July 30, 2019
    Assignee: CELLECTIS
    Inventors: Roman Galetto, Agnes Gouble, Stephanie Grosse, Cecile Mannioui, Laurent Poirot, Andrew Scharenberg, Julianne Smith
  • Publication number: 20190216854
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH
  • Publication number: 20190216853
    Abstract: A method of expanding TCRalpha deficient T-cells by expressing pTalpha or functional variants thereof into said cells, thereby restoring a functional CD3 complex. This method is particularly useful to enhance the efficiency of immunotherapy using primary T-cells from donors. This method involves the use of pTalpha or functional variants thereof and polynucleotides encoding such polypeptides to expand TCRalpha deficient T-cells. Such engineered cells can be obtained by using specific rare-cutting endonuclease, preferably TALE-nucleases. The use of Chimeric Antigen Receptor (CAR), especially multi-chain CAR, in such engineered cells to target malignant or infected cells. The invention opens the way to standard and affordable adoptive immunotherapy strategies for treating cancer and viral infections.
    Type: Application
    Filed: March 22, 2019
    Publication date: July 18, 2019
    Applicant: Cellectis
    Inventors: Roman GALETTO, Agnes GOUBLE, Stephanie GROSSE, Cecile MANNIOUI, Laurent POIROT, Andrew SCHARENBERG, Julianne SMITH