Patents by Inventor Agneta Simionescu

Agneta Simionescu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11773362
    Abstract: Bioreactors and components of bioreactors are described as may be beneficially utilized in development and conditioning of cellular materials for study or implant. The bioreactors are modular, and components of the bioreactors can be easily assembled with alternatives provided to develop specific, predetermined conditioning environments for cellular materials (e.g., implantable tissue). By selection of one of multiple alternative compliance chambers, a bioreactor can be utilized to condition tissue in a low-pressure circuit (e.g., a pulmonary heart circuit), and by utilization of an alternative compliance chamber, the bioreactor can instead condition tissue in a high-pressure circuit (e.g., an aortic heart circuit).
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: October 3, 2023
    Assignee: Clemson University Research Foundation
    Inventors: Leslie Sierad, Christopher Delaney, Richard Pascal, III, Dan Simionescu, Agneta Simionescu
  • Publication number: 20210246411
    Abstract: Bioreactors and components of bioreactors are described as may be beneficially utilized in development and conditioning of cellular materials for study or implant. The bioreactors are modular, and components of the bioreactors can be easily assembled with alternatives provided to develop specific, predetermined conditioning environments for cellular materials (e.g., implantable tissue). By selection of one of multiple alternative compliance chambers, a bioreactor can be utilized to condition tissue in a low-pressure circuit (e.g., a pulmonary heart circuit), and by utilization of an alternative compliance chamber, the bioreactor can instead condition tissue in a high-pressure circuit (e.g., an aortic heart circuit).
    Type: Application
    Filed: April 29, 2021
    Publication date: August 12, 2021
    Inventors: LESLIE SIERAD, CHRISTOPHER DELANEY, RICHARD PASCAL, III, DAN SIMIONESCU, AGNETA SIMIONESCU
  • Patent number: 11034928
    Abstract: Bioreactors and components of bioreactors are described as may be beneficially utilized in development and conditioning of cellular materials for study or implant. The bioreactors are modular and components of the bioreactors can be easily assembled with alternatives provided to develop specific, predetermined conditioning environments for cellular materials (e.g., implantable tissue). By selection of one of multiple alternative compliance chambers, a bioreactor can be utilized to condition tissue in a low pressure circuit (e.g., a pulmonary heart circuit), and by utilization of an alternative compliance chamber, the bioreactor can instead condition tissue in a high pressure circuit (e.g., an aortic heart circuit).
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: June 15, 2021
    Assignee: Clemson University Research Foundation
    Inventors: Leslie Sierad, Christopher Delaney, Richard Pascal, III, Dan Simionescu, Agneta Simionescu
  • Patent number: 10660754
    Abstract: Tissue holders that can be used for gripping natural or synthetic heart valves are described. The tissue holder can include a clamping mechanism and a spring and can be self-adjusting with regard to pressure applied to the tissue gripped in the holder. The tissue holder can be removably attached to systems for processing the tissues and can provide completely hands-free processing of a tissue from development or excisement to implantation and/or completion of testing.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: May 26, 2020
    Assignee: Clemson University Research Foundation
    Inventors: Leslie Sierad, Richard Pascal, III, Chris deBorde, Dan Simionescu, Agneta Simionescu
  • Publication number: 20180296342
    Abstract: Tissue holders that can be used for gripping natural or synthetic heart valves are described. The tissue holder can include a clamping mechanism and a spring and can be self-adjusting with regard to pressure applied to the tissue gripped in the holder. The tissue holder can be removably attached to systems for processing the tissues and can provide completely hands-free processing of a tissue from development or excisement to implantation and/or completion of testing.
    Type: Application
    Filed: June 18, 2018
    Publication date: October 18, 2018
    Inventors: Leslie Sierad, Richard Pascal, III, Chris deBorde, Dan Simionescu, Agneta Simionescu
  • Patent number: 10022225
    Abstract: Tissue holders that can be used for gripping natural or synthetic heart valves are described. The tissue holder can include a clamping mechanism and a spring and can be self-adjusting with regard to pressure applied to the tissue gripped in the holder. The tissue holder can be removably attached to systems for processing the tissues and can provide completely hands-free processing of a tissue from development or excisement to implantation and/or completion of testing.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: July 17, 2018
    Assignee: CLEMSON UNIVERSITY RESEARCH FOUNDATION
    Inventors: Leslie Sierad, Richard Pascal, Christopher deBorde, Dan Simionescu, Agneta Simionescu
  • Patent number: 9283241
    Abstract: Disclosed is a medical device treated with a phenolic compound and a process for treating a device with the phenolic compound. For example, a collagen or elastin-based scaffold can be treated with pentagalloyl glucose (PGG). The treated scaffold can become resistant to glycoxidative stress associated with advanced glycation end products (AGEs) that are present in a hyperglycemic environments associated with diabetes mellitus. The treated scaffold can exhibit a reduced increase in stiffness as compared to an untreated scaffold. The treated scaffold can also exhibit reduced inflammation without negatively affecting the ability of the scaffold to remodel in vivo.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: March 15, 2016
    Assignee: Clemson University
    Inventors: Agneta Simionescu, Dan Simionescu, James Chow
  • Publication number: 20160022420
    Abstract: Tissue holders that can be used for gripping natural or synthetic heart valves are described. The tissue holder can include a clamping mechanism and a spring and can be self-adjusting with regard to pressure applied to the tissue gripped in the holder. The tissue holder can be removably attached to systems for processing the tissues and can provide completely hands-free processing of a tissue from development or excisement to implantation and/or completion of testing.
    Type: Application
    Filed: July 23, 2015
    Publication date: January 28, 2016
    Inventors: Leslie Sierad, Richard Pascal, III, Christopher deBorde, Dan Simionescu, Agneta Simionescu
  • Publication number: 20160024452
    Abstract: Bioreactors and components of bioreactors are described as may be beneficially utilized in development and conditioning of cellular materials for study or implant. The bioreactors are modular and components of the bioreactors can be easily assembled with alternatives provided to develop specific, predetermined conditioning environments for cellular materials (e.g., implantable tissue). By selection of one of multiple alternative compliance chambers, a bioreactor can be utilized to condition tissue in a low pressure circuit (e.g., a pulmonary heart circuit), and by utilization of an alternative compliance chamber, the bioreactor can instead condition tissue in a high pressure circuit (e.g., an aortic heart circuit).
    Type: Application
    Filed: July 23, 2015
    Publication date: January 28, 2016
    Inventors: Leslie Sierad, Christopher Delaney, Richard Pascal, III, Dan Simionescu, Agneta Simionescu
  • Publication number: 20140018909
    Abstract: Disclosed is a medical device treated with a phenolic compound and a process for treating a device with the phenolic compound. For example, a collagen or elastin-based scaffold can be treated with pentagalloyl glucose (PGG). The treated scaffold can become resistant to glycoxidative stress associated with advanced glycation end products (AGEs) that are present in a hyperglycemic environments associated with diabetes mellitus. The treated scaffold can exhibit a reduced increase in stiffness as compared to an untreated scaffold. The treated scaffold can also exhibit reduced inflammation without negatively affecting the ability of the scaffold to remodel in vivo.
    Type: Application
    Filed: July 10, 2013
    Publication date: January 16, 2014
    Inventors: Agneta Simionescu, Dan Simionescu, James Chow
  • Patent number: 6214055
    Abstract: A method for the rapid chemical treatment of autologous connective tissues which enhances biocompatibility by reducing cytotoxicity, immunogenicity and calcification without impairing the mechanical properties of the fixed tissue. The procedure includes a short exposure of the autologous biological tissue to a dialdehyde fixative followed by the rapid neutralization of excess aldehyde with an aminoacid solution.
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: April 10, 2001
    Assignee: Mures Cardiovascular Research, Inc.
    Inventors: Dan Simionescu, Agneta Simionescu