Patents by Inventor Ahmad BAHAMDAN

Ahmad BAHAMDAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200360854
    Abstract: A process for recovering sulfur and carbon dioxide from a sour gas stream, the process comprising the steps of: providing a sour gas stream to a membrane separation unit, the sour gas stream comprising hydrogen sulfide and carbon dioxide; separating the hydrogen sulfide from the carbon dioxide in the membrane separation unit to obtain a retentate stream and a first permeate stream, wherein the retentate stream comprises hydrogen sulfide, wherein the permeate stream comprises carbon dioxide; introducing the retentate stream to a sulfur recovery unit; processing the retentate stream in the sulfur recovery unit to produce a sulfur stream and a tail gas stream, wherein the sulfur stream comprises liquid sulfur; introducing the permeate stream to an amine absorption unit; and processing the permeate stream in the amine absorption unit to produce an enriched carbon dioxide stream.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 19, 2020
    Applicants: SAUDI ARABIAN OIL COMPANY, Membrane Technology and Research, Inc.
    Inventors: Milind M. VAIDYA, Sebastien A. DUVAL, Feras HAMAD, Richard BAKER, Tim MERKEL, Kaeeid LOKHANDWALA, Ahmad A. BAHAMDAN, Faisal D. AL-OTAIBI
  • Publication number: 20200360855
    Abstract: A process for sweetening a syngas stream, the process comprising the steps of: providing a syngas stream to a nonselective amine absorption unit, the sour syngas stream comprising syngas, carbon dioxide, and hydrogen sulfide; separating the syngas stream in the nonselective amine absorption unit to obtain an overhead syngas stream and an acid gas stream; introducing the acid gas stream to a membrane separation unit, the acid gas stream comprising hydrogen sulfide and carbon dioxide; separating the acid gas stream in the membrane separation unit to produce a retentate stream and a permeate stream, wherein the retentate stream comprises hydrogen sulfide, wherein the permeate stream comprises carbon dioxide; introducing the retentate stream to a sulfur recovery unit; processing the retentate stream in the sulfur recovery unit to produce a sulfur stream and a tail gas stream, wherein the sulfur stream comprises liquid sulfur.
    Type: Application
    Filed: May 18, 2020
    Publication date: November 19, 2020
    Applicants: SAUDI ARABIAN OIL COMPANY, Membrane Technology and Research, Inc.
    Inventors: Milind M. VAIDYA, Sebastien A. DUVAL, Feras HAMAD, Richard BAKER, Tim MERKEL, Kaeeid LOKHANDWALA, Ivy HUANG, Ahmad A. BAHAMDAN, Faisal D. AL-OTAIBI
  • Publication number: 20200269195
    Abstract: Co-polyimide membranes for separating components of sour natural gas including at least three distinct moieties polymerized together, the moieties including a 2,2?-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) based moiety; a 4,4?-(hexafluoroisopropylidene)dianiline (6FpDA) based moiety; and at least one component selected from the group consisting of: a 9,9-bis(4-aminophenyl) fluorene (CARDO) based moiety; a 2,3,5,6-tetramethyl-1,4-phenylenediamine (durene diamine) based moiety; a 2,2?-bis(trifluoromethyl)benzidine (ABL-21) based moiety; a 3,3?-dihydroxybenzidine based moiety; and a 3,3?-(hexafluoroisopropylidene)dianiline based moiety.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 27, 2020
    Applicant: Saudi Arabian Oil Company
    Inventors: Garba Oloriegbe YAHAYA, Ali HAYEK, Abdulkarim ALSAMAH, Ahmad BAHAMDAN
  • Publication number: 20200269196
    Abstract: Co-polyimide membranes for separating components of sour natural gas including at least three distinct moieties polymerized together, the moieties including a 2,2?-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) based moiety; a 2,4,6-trimethyl-m-phenylenediamine (DAM) based moiety; and at least one component selected from the group consisting of: a 4,4?-(hexafluoroisopropylidene)dianiline (6FpDA) based moiety; a 9,9-bis(4-aminophenyl) fluorene (CARDO) based moiety; a 2,3,5,6-tetramethyl-1,4-phenylenediamine (durene diamine) based moiety; a 2,2?-bis(trifluoromethyl)benzidine (ABL-21) based moiety; a 3,3?-dihydroxybenzidine based moiety; and a 3,3?-(hexafluoroisopropylidene)dianiline based moiety.
    Type: Application
    Filed: February 27, 2019
    Publication date: August 27, 2020
    Applicant: Saudi Arabian Oil Company
    Inventors: Garba Oloriegbe YAHAYA, Ali HAYEK, Abdulkarim ALSAMAH, Ahmad BAHAMDAN
  • Publication number: 20180345229
    Abstract: Co-polyimide membranes for separating components of sour natural gas where embodiments can include at least three distinct moieties polymerized together, the moieties including a 2,2?-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) based moiety; a 9,9-bis(4-aminophenyl) fluorene (CARDO) based moiety; and 2,3,5,6-tetramethyl-1,4-phenylenediamine (durene diamine) based moiety.
    Type: Application
    Filed: May 29, 2018
    Publication date: December 6, 2018
    Applicant: Saudi Arabian Oil Company
    Inventors: Garba Oloriegbe Yahaya, Ilham Mokhtari, Ahmad A. Bahamdan
  • Patent number: 9962646
    Abstract: Compositions of and methods for separating components of a natural gas stream are disclosed. In one embodiment, the method includes receiving an inlet stream comprising natural gas, the inlet stream having an inlet pressure, and the inlet stream further comprising methane, helium, and an impurity. The method includes allowing the inlet stream to contact a block co-polyimide membrane, the block co-polyimide membrane exhibiting both higher permeability for and higher selectivity for the helium and the impurity than for the methane at the inlet pressure of the inlet stream and separating the methane from the helium and the impurity to create a retentate stream, the retentate stream comprising an increased concentration of methane relative to the inlet stream. The method also includes creating a permeate stream comprising the helium and the impurity at an increased concentration of helium and impurity relative to a concentration of helium and impurity in the inlet stream.
    Type: Grant
    Filed: January 4, 2016
    Date of Patent: May 8, 2018
    Assignee: Saudi Arabian Oil Company
    Inventors: Garba Oloriegbe Yahaya, Ahmad A. Bahamdan, Mohammad S. Al-Qahtani, Feras Hamad, Ahmed Ameen, Abdulaziz Yousef Al-Ammar
  • Publication number: 20170189850
    Abstract: Compositions of and methods for separating components of a natural gas stream are disclosed. In one embodiment, the method includes receiving an inlet stream comprising natural gas, the inlet stream having an inlet pressure, and the inlet stream further comprising methane, helium, and an impurity. The method includes allowing the inlet stream to contact a block co-polyimide membrane, the block co-polyimide membrane exhibiting both higher permeability for and higher selectivity for the helium and the impurity than for the methane at the inlet pressure of the inlet stream and separating the methane from the helium and the impurity to create a retentate stream, the retentate stream comprising an increased concentration of methane relative to the inlet stream. The method also includes creating a permeate stream comprising the helium and the impurity at an increased concentration of helium and impurity relative to a concentration of helium and impurity in the inlet stream.
    Type: Application
    Filed: January 4, 2016
    Publication date: July 6, 2017
    Applicant: Saudi Arabian Oil Company
    Inventors: Garba Oloriegbe Yahaya, Ahmad A. Bahamdan, Mohammad S. Al-Qahtani, Feras Hamad, Ahmed Ameen, Abdulaziz Yousel Al-Ammar
  • Publication number: 20080281000
    Abstract: Novel cross-linked gels comprised of alkoxyetheramides grafted to polysaccharides that have superior viscosity properties have been made. By controlling the chain length of the alkoxyetheramides and the hydrophobic nature of the gel, these materials are ideal for many uses such as in hydraulic fracturing of oil-bearing geological formations, in the paint and dye industries, as dispersants, in personal care products and for carriers in controlled drug delivery.
    Type: Application
    Filed: September 6, 2006
    Publication date: November 13, 2008
    Inventors: William H. Daly, Ahmad A. Bahamdan