Patents by Inventor Ahmad M. Mahmoud

Ahmad M. Mahmoud has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160108762
    Abstract: A system (10) includes a condenser (12) with an inlet (22) and an outlet (24), a pump (14) with an outlet (28) and with an inlet (26) connected to the outlet (24) of the condenser (12), and an evaporator (16). The evaporator (16) includes an inlet (30) connected to the outlet (28) of the pump (14), an outlet (31), evaporating tubes (38), and a fluid distribution system (33) for spraying a fluid over the evaporating tubes (38). The system (10) further includes a turbine (18) with an inlet (44) connected to the outlet (31) of the evaporator (16), an outlet (48) connected to the inlet (22) of the condenser (12), and a drive shaft (46). A generator (20) is connected to the drive shaft (46) of the turbine (18).
    Type: Application
    Filed: May 1, 2014
    Publication date: April 21, 2016
    Inventors: Ahmad M. Mahmoud, Jaeseon Lee, Sean P. Breen
  • Publication number: 20160076799
    Abstract: A system (10) includes a fluid with components that evaporate at different temperatures, a condenser (12) with an inlet (22) and an outlet (24), a pump (14) with an outlet (28) and with an inlet (26) connected to the outlet (24) of the condenser (12), and an evaporator (16). The evaporator (16) includes an inlet (30) connected to the outlet (28) of the pump (14), an outlet (31), evaporating tubes (38), pool boiling tubes (42), and a fluid distribution system (33) for spraying the fluid over the evaporating tubes (38). The system (10) further includes a turbine (18) with an inlet (44) connected to the outlet (31) of the evaporator (16), an outlet (48) connected to the inlet (22) of the condenser (12), and a drive shaft (46). A generator (20) is connected to the drive shaft (46) of the turbine (18).
    Type: Application
    Filed: May 1, 2014
    Publication date: March 17, 2016
    Inventors: Ahmad M. Mahmoud, Jaeseon Lee
  • Patent number: 9267696
    Abstract: An air temperature and humidity control device is provided including a first heat pump having a compressor, an expansion valve, a condenser, and an evaporator. The first heat pump has a refrigerant circulating there through. A humidity controller includes a first contactor fluidly coupled to the evaporator and condenser. The first contact includes at least one contact module having a porous sidewall that defines an internal space through which a hygroscopic material flows. A first air flow is in communication with the porous sidewall of the first contactor. The device also has a second heat pump including a first polishing coil. The first polishing coil is substantially aligned with and arranged generally downstream from the first contactor relative to the first air flow.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: February 23, 2016
    Assignee: CARRIER CORPORATION
    Inventors: David W. Gerlach, Sherif Kandil, Parmesh Verma, Frederick J. Cogswell, Rajiv Ranjan, Ahmad M. Mahmoud, Richard G. Lord
  • Patent number: 9250002
    Abstract: A system for controlling an absorption chiller includes feedback control loops determining adjustments to system cooling and heating capacities and a controller for simultaneously adjusting positions of an energy input valve, a hot water valve, and a chilled water valve. The controller adjusts valves based on desired adjustments to system cooling and heating capacities and performance maps characterizing relationships between cooling capacity and heating capacities and valve positions. A method for controlling an absorption chiller includes the step of obtaining a performance map characterizing heat energy input to cooling and heating loops as functions of valve positions. To obtain the map, the hot water valve is held in a substantially constant position while the chilled water valve is modulated. Similarly, the hot water valve is modulated while the chilled water valve is held in a substantially constant position.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: February 2, 2016
    Assignee: CARRIER CORPORATION
    Inventors: Jiachuan Wang, Chaohong Cai, Ahmad M. Mahmoud, Junqiang Fan, Richard L. Martin, John F. Boardman, Timothy C. Wagner
  • Patent number: 9039923
    Abstract: A composition of a zeotropic mixture has a first chemical constituent and at least one second, different chemical constituent. The zeoptropic mixture has a temperature glide of 5° C.-25° C. with regard to its saturated vapor temperature and its saturated liquid temperature. The first chemical constituent is selected from 1,1,1,3,3-pentafluoropropane, 1,1,2,2,3-pentafluoropropane, 1,1,1,3,3-pentafluorobutane, methyl perfluoropropyl ether, 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: May 26, 2015
    Assignee: United Technologies Corporation
    Inventors: Ahmad M. Mahmoud, Jaeseon Lee, Dong Luo
  • Patent number: 8857185
    Abstract: An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.
    Type: Grant
    Filed: January 6, 2012
    Date of Patent: October 14, 2014
    Assignee: United Technologies Corporation
    Inventors: Ahmad M. Mahmoud, Jaeseon Lee, Thomas D. Radcliff
  • Publication number: 20140245772
    Abstract: An air temperature and humidity control device is provided including a first heat pump having a compressor, an expansion valve, a condenser, and an evaporator. The first heat pump has a refrigerant circulating there through. A humidity controller includes a first contactor fluidly coupled to the evaporator and condenser. The first contact includes at least one contact module having a porous sidewall that defines an internal space through which a hygroscopic material flows. A first air flow is in communication with the porous sidewall of the first contactor. The device also has a second heat pump including a first polishing coil. The first polishing coil is substantially aligned with and arranged generally downstream from the first contactor relative to the first air flow.
    Type: Application
    Filed: February 27, 2014
    Publication date: September 4, 2014
    Applicant: Carrier Corporation
    Inventors: David W. Gerlach, Sherif Kandil, Parmesh Verma, Frederick J. Cogswell, Rajiv Ranjan, Ahmad M. Mahmoud, Richard G. Lord
  • Publication number: 20130207021
    Abstract: A composition of a zeotropic mixture has a first chemical constituent and at least one second, different chemical constituent. The zeoptropic mixture has a temperature glide of 5° C.-25° C. with regard to its saturated vapor temperature and its saturated liquid temperature. The first chemical constituent is selected from 1,1,1,3,3-pentafluoropropane, 1,1,2,2,3-pentafluoropropane, 1,1,1,3,3-pentafluorobutane, methyl perfluoropropyl ether, 1,1,1,2,3,3-hexafluoropropane and 1,1,1,2,2,4,5,5,5-nonafluoro-4-(trifluoromethyl)-3-pentanone.
    Type: Application
    Filed: February 14, 2012
    Publication date: August 15, 2013
    Inventors: Ahmad M. Mahmoud, Jaeseon Lee, Dong Luo
  • Publication number: 20130174552
    Abstract: A power generation system includes a non-azeotropic working fluid mixture and a Rankine cycle system. The Rankine cycle system includes a turbine generator that is driven by vapor of the first working fluid mixture, and a condenser that exchanges thermal energy between the vapor received from the turbine generator and a cooling medium. The working fluid mixture is characterized by a condenser temperature glide during phase change between approximately five degrees and thirty degrees Kelvin, a condensing pressure between approximately one tenth of one percent and eleven percent of a critical pressure of the working fluid mixture, and a condenser bubble point temperature between approximately one degree and nine degrees Kelvin greater than a temperature at which the cooling medium is received by the condenser.
    Type: Application
    Filed: January 6, 2012
    Publication date: July 11, 2013
    Applicant: UNITED TECHNOLOGIES CORPORATION
    Inventors: Ahmad M. Mahmoud, Thomas D. Radcliff, Jaeseon Lee, Dong Luo, Frederick J. Cogswell
  • Publication number: 20130174551
    Abstract: An example power generation system includes a vapor generator, a turbine, a separator and a pump. In the separator, the multiple components of the working fluid are separated from each other and sent to separate condensers. Each of the separate condensers is configured for condensing a single component of the working fluid. Once each of the components condense back into a liquid form they are recombined and exhausted to a pump that in turn drives the working fluid back to the vapor generator.
    Type: Application
    Filed: January 6, 2012
    Publication date: July 11, 2013
    Inventors: Ahmad M. Mahmoud, Jaeseon Lee, Thomas D. Radcliff
  • Publication number: 20120216552
    Abstract: A system for controlling an absorption chiller includes feedback control loops determining adjustments to system cooling and heating capacities and a controller for simultaneously adjusting positions of an energy input valve, a hot water valve, and a chilled water valve. The controller adjusts valves based on desired adjustments to system cooling and heating capacities and performance maps characterizing relationships between cooling capacity and heating capacities and valve positions. A method for controlling an absorption chiller includes the step of obtaining a performance map characterizing heat energy input to cooling and heating loops as functions of valve positions. To obtain the map, the hot water valve is held in a substantially constant position while the chilled water valve is modulated. Similarly, the hot water valve is modulated while the chilled water valve is held in a substantially constant position.
    Type: Application
    Filed: February 27, 2012
    Publication date: August 30, 2012
    Applicant: CARRIER CORPORATION
    Inventors: Jiachuan Wang, Chaohong Cai, Ahmad M. Mahmoud, Junqiang Fan, Richard L. Martin, John F. Boardman, Timothy C. Wagner
  • Publication number: 20120067049
    Abstract: A power generating system in one embodiment employs a Rankine Cycle system that is coupled to multiple heat sources. The Rankine cycle system includes a customized working fluid that comprises a mixture of a plurality of constituent fluids, the selection of which causes the mixture to exhibit a working fluid profile. In one embodiment, the working fluid profile includes a temperature glide portion selected and optimized based on operating conditions of the heat sources, wherein the temperature glide portion includes a constituent phase point at which one of the constituent fluids undergoes a phase change before the other constituent fluids of the mixture.
    Type: Application
    Filed: September 17, 2010
    Publication date: March 22, 2012
    Applicant: United Technologies Corporation
    Inventors: Lance D. Woolley, Sean P. Breen, Ahmad M. Mahmoud