Patents by Inventor Ahmad Moini

Ahmad Moini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9321042
    Abstract: Described are catalyst compositions, catalytic articles, methods of manufacturing catalytic articles and exhaust gas treatment systems and methods that utilize the catalytic articles. The catalytic articles include a washcoat of platinum group metal on refractory oxide support particles, and further including a molecular sieve wherein greater than 90% of the molecular sieve particles have a particle size greater than 1 ?m.
    Type: Grant
    Filed: December 12, 2013
    Date of Patent: April 26, 2016
    Assignee: BASF Corporation
    Inventors: Jeffrey B. Hoke, Ahmad Moini, Marcus Hilgendorff
  • Publication number: 20160101412
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Publication number: 20160101411
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 9308497
    Abstract: The present disclosure provides an AgBi catalyst over alumina suitable for performing hydrocarbon selective catalytic reduction (HC-SCR).
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: April 12, 2016
    Assignee: BASF Corporation
    Inventors: Howard Furbeck, Gerald Koermer, Ahmad Moini
  • Publication number: 20150367336
    Abstract: Described is a selective catalytic reduction material comprising a spherical particle including an agglomeration of crystals of a molecular sieve. The catalyst is a crystalline material that is effective to catalyze the selective catalytic reduction of nitrogen oxides in the presence of a reductant at temperatures between 200° C. and 600° C. A method for selectively reducing nitrogen oxides and an exhaust gas treatment system are also described.
    Type: Application
    Filed: June 17, 2015
    Publication date: December 24, 2015
    Inventors: Natalia Trukhan, Ulrich Müller, Michael Breen, Barbara Slawski, Qi Fu, Jaya L. Mohanan, Martin W. Kraus, Ahmad Moini, Xiaofan Yang, John K. Hochmuth
  • Publication number: 20150367337
    Abstract: Described is a selective catalytic reduction catalyst comprising a zeolitic framework material of silicon and aluminum atoms, wherein a fraction of the silicon atoms are isomorphously substituted with a tetravalent metal. The catalyst can include a promoter metal such that the catalyst effectively promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H2O selectively over a temperature range of 150 to 650° C. In another aspect, described is a selective catalytic reduction composite comprising an SCR catalyst material and an ammonia storage material comprising a transition metal having an oxidation state of IV. The SCR catalyst material promotes the reaction of ammonia with nitrogen oxides to form nitrogen and H2O selectively over a temperature range of 150° C. to 600° C., and the SCR catalyst material is effective to store ammonia at temperatures of 400° C. and above.
    Type: Application
    Filed: June 17, 2015
    Publication date: December 24, 2015
    Inventors: Xiaofan Yang, John K. Hochmuth, Wen-Mei Xue, Xiaoming Wang, Matthew Tyler Caudle, Ahmad Moini, Dustin O. Hollobaugh, Qi Fu, Michael Breen
  • Publication number: 20150343375
    Abstract: Molecular sieves, improved methods for their synthesis, and catalysts, systems and methods of using these molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are described. The molecular sieves are made using a tailored colloid including an alumina source, a silica source and a structure directing agent.
    Type: Application
    Filed: August 7, 2015
    Publication date: December 3, 2015
    Inventors: Ahmad Moini, Saeed Alerasool, Subramanian Prasad
  • Patent number: 9174849
    Abstract: Molecular sieves, improved methods for their synthesis, and catalysts, systems and methods of using these molecular sieves as catalysts in a variety of processes such as abating pollutants in exhaust gases and conversion processes are described. The molecular sieves are made using a tailored colloid including an alumina source, a silica source and a structure directing agent.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: November 3, 2015
    Inventors: Ahmad Moini, Saeed Alerasool, Subramanian Prasad
  • Patent number: 9162218
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: October 20, 2015
    Assignee: BASF CORPORATION
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 9138732
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: September 22, 2015
    Assignee: BASF CORPORATION
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Publication number: 20150139897
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 21, 2015
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Publication number: 20150132206
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25: 1 to about 1:1.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 8877669
    Abstract: Provided are hydroisomerization catalysts for processing a bio-based feedstock into biodiesel fuels. These catalysts comprise a catalytic material and a matrix component. The catalytic material is made up of a molecular sieve that has a pre-loaded platinum group metal. The catalytic material and the matrix component are processed together to form the hydroisomerization catalyst. Methods of making these hydroisomerization catalysts include synthesizing a molecular sieve; purifying the molecular sieve; associating the molecular sieve with a platinum group metal in the absence of the matrix component to form the pre-loaded molecular sieve before formation of a catalyst body; mixing the pre-loaded molecular sieve with the matrix component to form a mixture; processing the mixture to form a catalyst body; and drying and calcining the catalyst body to form the hydroisomerization catalyst. These hydroisomerization catalysts can be used to process hydrodeoxygenated plant- or animal-derived feeds to yield a biofuel.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: November 4, 2014
    Assignee: BASF Corporation
    Inventors: Michael A. Loewenstein, Ahmad Moini, Ivan Petrovic
  • Publication number: 20140275689
    Abstract: The hydroisomerization of a paraffinic hydrocarbon feedstock obtained from renewable sources is effectively achieved by passing the feedstock in the presence of hydrogen over a hydroisomerization catalyst comprising a crystalline metal silicate molecular sieve, in which a portion of the crystalline framework contains iron.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Inventors: Ivan Petrovic, Ahmad Moini, Scott Hedrick, Martin Kraus
  • Publication number: 20140219879
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Application
    Filed: April 4, 2014
    Publication date: August 7, 2014
    Applicant: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Publication number: 20140170043
    Abstract: Described are catalyst compositions, catalytic articles, methods of manufacturing catalytic articles and exhaust gas treatment systems and methods that utilize the catalytic articles. The catalytic articles include a washcoat of platinum group metal on refractory oxide support particles, and further including a molecular sieve wherein greater than 90% of the molecular sieve particles have a particle size greater than 1 ?m.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 19, 2014
    Applicant: BASF Corporation
    Inventors: Jeffrey B. Hoke, Ahmad Moini, Marcus Hilgendorff
  • Publication number: 20140158557
    Abstract: Disclosed are storage vessel pressurization components and methods for use with a storage vessel having a headspace with a first gaseous species. The storage vessel pressurization component including a storage medium with a second gaseous species adsorbed thereon. The storage vessel pressurization component configured to adsorb the first gaseous species from the headspace and release the second gaseous species into the headspace. Articles comprising the storage vessel pressurization component are also described.
    Type: Application
    Filed: December 12, 2013
    Publication date: June 12, 2014
    Applicant: BASF Corporation
    Inventors: William Dolan, Ahmad Moini, Martin W. Kraus
  • Patent number: 8735311
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to alumina ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: May 27, 2014
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald Stephen Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew Tyler Caudle
  • Patent number: 8617474
    Abstract: Systems for treating exhaust gas incorporating catalysts comprising metal-loaded non-zeolitic molecular sieves having the CHA crystal structure, including Cu-SAPO-34, and methods for preparing such catalysts are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stability at high reaction temperatures.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: December 31, 2013
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Gerald Stephen Koermer, Ahmad Moini, Signe Unverricht
  • Patent number: 8404203
    Abstract: Zeolite catalysts and systems and methods for preparing and using zeolite catalysts having the CHA crystal structure are disclosed. The catalysts can be used to remove nitrogen oxides from a gaseous medium across a broad temperature range and exhibit hydrothermal stable at high reaction temperatures. The zeolite catalysts include a zeolite carrier having a silica to alumina ratio from about 15:1 to about 256:1 and a copper to aluminum ratio from about 0.25:1 to about 1:1.
    Type: Grant
    Filed: June 8, 2009
    Date of Patent: March 26, 2013
    Assignee: BASF Corporation
    Inventors: Ivor Bull, Wen-Mei Xue, Patrick Burk, R. Samuel Boorse, William M. Jaglowski, Gerald S. Koermer, Ahmad Moini, Joseph A. Patchett, Joseph C. Dettling, Matthew T. Caudle