Patents by Inventor Ahmad Safaai-Jazi

Ahmad Safaai-Jazi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8983258
    Abstract: A random array of holes is created in an optical fiber by gas generated during fiber drawing. The gas forms bubbles which are drawn into long, microscopic holes. The gas is created by a gas generating material such as silicon nitride. Silicon nitride oxidizes to produce nitrogen oxides when heated. The gas generating material can alternatively be silicon carbide or other nitrides or carbides. The random holes can provide cladding for optical confinement when located around a fiber core. The random holes can also be present in the fiber core. The fibers can be made of silica. The present random hole fibers are particularly useful as pressure sensors since they experience a large wavelength dependant increase in optical loss when pressure or force is applied.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: March 17, 2015
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Jeong I. Kim, Daniel Kominsky, Gary Pickrell, Ahmad Safaai-Jazi, Roger Stolen, Anbo Wang
  • Patent number: 8861912
    Abstract: A random array of holes is created in an optical fiber by gas generated during fiber drawing. The gas forms bubbles which are drawn into long, microscopic holes. The gas is created by a gas generating material such as silicon nitride. Silicon nitride oxidizes to produce nitrogen oxides when heated. The gas generating material can alternatively be silicon carbide or other nitrides or carbides. The random holes can provide cladding for optical confinement when located around a fiber core. The random holes can also be present in the fiber core. The fibers can be made of silica. The present random hole fibers are particularly useful as pressure sensors since they experience a large wavelength dependant increase in optical loss when pressure or force is applied.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: October 14, 2014
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Jeong I. Kim, Daniel Kominsky, Gary Pickrell, Ahmad Safaai-Jazi, Roger H Stolen, Anbo Wang
  • Publication number: 20140013808
    Abstract: A random array of holes is created in an optical fiber by gas generated during fiber drawing. The gas forms bubbles which are drawn into long, microscopic holes. The gas is created by a gas generating material such as silicon nitride. Silicon nitride oxidizes to produce nitrogen oxides when heated. The gas generating material can alternatively be silicon carbide or other nitrides or carbides. The random holes can provide cladding for optical confinement when located around a fiber core. The random holes can also be present in the fiber core. The fibers can be made of silica. The present random hole fibers are particularly useful as pressure sensors since they experience a large wavelength dependant increase in optical loss when pressure or force is applied.
    Type: Application
    Filed: September 10, 2013
    Publication date: January 16, 2014
    Applicant: Virginia Tech Intellectual Properties, Inc
    Inventors: Jeong I. KIM, Daniel KOMINSKY, Gary PICKRELL, Ahmad SAFAAI-JAZI, Roger STOLEN, Anbo WANG
  • Publication number: 20130223804
    Abstract: A random array of holes is created in an optical fiber by gas generated during fiber drawing. The gas forms bubbles which are drawn into long, microscopic holes. The gas is created by a gas generating material such as silicon nitride. Silicon nitride oxidizes to produce nitrogen oxides when heated. The gas generating material can alternatively be silicon carbide or other nitrides or carbides. The random holes can provide cladding for optical confinement when located around a fiber core. The random holes can also be present in the fiber core. The fibers can be made of silica. The present random hole fibers are particularly useful as pressure sensors since they experience a large wavelength dependant increase in optical loss when pressure or force is applied.
    Type: Application
    Filed: May 21, 2012
    Publication date: August 29, 2013
    Applicant: Virginia Tech Intellectual Properties, Inc.
    Inventors: Jeong I. KIM, Daniel KOMINSKY, Gary PICKRELL, Ahmad SAFAAI-JAZI, Roger H. STOLEN, Anbo WANG
  • Patent number: 7567742
    Abstract: A random array of holes is created in an optical fiber by gas generated during fiber drawing. The gas forms bubbles which are drawn into long, microscopic holes. The gas is created by a gas generating material such as silicon nitride. Silicon nitride oxidizes to produce nitrogen oxides when heated. The gas generating material can alternatively be silicon carbide or other nitrides or carbides. The random holes can provide cladding for optical confinement when located around a fiber core. The random holes can also be present in the fiber core. The fibers can be made of silica. The present random hole fibers are particularly useful as pressure sensors since they experience a large wavelength dependant increase in optical loss when pressure or force is applied.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: July 28, 2009
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Gary Pickrell, Daniel Kominsky, Roger Stolen, Jeong I. Kim, Anbo Wang, Ahmad Safaai-Jazi
  • Publication number: 20090056383
    Abstract: A random array of holes is created in an optical fiber by gas generated during fiber drawing. The gas forms bubbles which are drawn into long, microscopic holes. The gas is created by a gas generating material such as silicon nitride. Silicon nitride oxidizes to produce nitrogen oxides when heated. The gas generating material can alternatively be silicon carbide or other nitrides or carbides. The random holes can provide cladding for optical confinement when located around a fiber core. The random holes can also be present in the fiber core. The fibers can be made of silica. The present random hole fibers are particularly useful as pressure sensors since they experience a large wavelength dependant increase in optical loss when pressure or force is applied.
    Type: Application
    Filed: November 3, 2008
    Publication date: March 5, 2009
    Inventors: Gary Pickrell, Daniel Kominsky, Roger Stolen, Jeong I. Kim, Anbo Wang, Ahmad Safaai-Jazi
  • Patent number: 7444838
    Abstract: A random array of holes is created in an optical fiber by gas generated during fiber drawing. The gas forms bubbles which are drawn into long, microscopic holes. The gas is created by a gas generating material such as silicon nitride. Silicon nitride oxidizes to produce nitrogen oxides when heated. The gas generating material can alternatively be silicon carbide or other nitrides or carbides. The random holes can provide cladding for optical confinement when located around a fiber core. The random holes can also be present in the fiber core. The fibers can be made of silica. The present random hole fibers are particularly useful as pressure sensors since they experience a large wavelength dependant increase in optical loss when pressure or force is applied.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: November 4, 2008
    Assignee: Virginia Tech Intellectual Properties, Inc.
    Inventors: Gary Pickrell, Daniel Kominsky, Roger Stolen, Jeong I. Kim, Anbo Wang, Ahmad Safaai-Jazi
  • Publication number: 20080056657
    Abstract: A random array of holes is created in an optical fiber by gas generated during fiber drawing. The gas forms bubbles which are drawn into long, microscopic holes. The gas is created by a gas generating material such as silicon nitride. Silicon nitride oxidizes to produce nitrogen oxides when heated. The gas generating material can alternatively be silicon carbide or other nitrides or carbides. The random holes can provide cladding for optical confinement when located around a fiber core. The random holes can also be present in the fiber core. The fibers can be made of silica. The present random hole fibers are particularly useful as pressure sensors since they experience a large wavelength dependant increase in optical loss when pressure or force is applied.
    Type: Application
    Filed: October 30, 2007
    Publication date: March 6, 2008
    Inventors: Gary Pickrell, Daniel Kominsky, Roger Stoleh, Jeong Kim, Anbo Wang, Ahmad Safaai-Jazi
  • Publication number: 20050094954
    Abstract: A random array of holes is created in an optical fiber by gas generated during fiber drawing. The gas forms bubbles which are drawn into long, microscopic holes. The gas is created by a gas generating material such as silicon nitride. Silicon nitride oxidizes to produce nitrogen oxides when heated. The gas generating material can alternatively be silicon carbide or other nitrides or carbides. The random holes can provide cladding for optical confinement when located around a fiber core. The random holes can also be present in the fiber core. The fibers can be made of silica. The present random hole fibers are particularly useful as pressure sensors since they experience a large wavelength dependant increase in optical loss when pressure or force is applied.
    Type: Application
    Filed: June 9, 2004
    Publication date: May 5, 2005
    Inventors: Gary Pickrell, Daniel Kominsky, Roger Stolen, Jeong Kim, Anbo Wang, Ahmad Safaai-Jazi
  • Patent number: 4976512
    Abstract: A narrowband optical fiber spectral filter comprises a fiber optic coupler formed from a W fiber and step index fiber. The W index fiber comprises a core having a high index of refraction. The core is surrounded by an inner cladding that has a very low index of refraction. An outer cladding surrounds the inner cladding and has an index of refraction that is greater than that of the inner cladding but less than that the core. The core of the step index fiber is surrounded by an outer cladding that preferably has the same index of refraction as the outer cladding of the first fiber. The two fibers are fused together to form a fiberoptic coupler that has an interaction region of predetermined length. The resulting fiberoptic coupler has different transmission characteristics for the two component fibers at which light can transfer between the fibers. The dispersion characteristics are the same for only a very narrow range of wavelengths.
    Type: Grant
    Filed: April 5, 1989
    Date of Patent: December 11, 1990
    Inventor: Ahmad Safaai-Jazi
  • Patent number: 4743870
    Abstract: An elastic waveguide, for propagating acoustic waves, consists of an elongated solid core region and an elongated solid outer cladding region. The acoustic waves propagate in a mode where the principle particle displacement is substantially parallel to the longitudinal axis of the waveguide, this mode is called longitudinal mode. The material densities and the bulk shear wave velocities of the core and cladding region are substantially the same but the bulk longitudinal wave velocity of the cladding region is larger than that of the core region.
    Type: Grant
    Filed: September 23, 1986
    Date of Patent: May 10, 1988
    Assignee: Canadian Patents and Development Ltd.
    Inventors: Cheng K. Jen, Ahmad Safaai-Jazi, Jean F. Bussiere, Gerald W. Farnell
  • Patent number: 4742318
    Abstract: A birefringent single-mode acoustic fiber for propagating linearly polarized shear acoustic waves while preserving linear polarization, comprises an elongated core region of a solid material in which acoustic waves can be propagated in two orthogonal shear mode components, and a cladding region enclosing all surfaces of the core region except end surfaces thereof, the cladding region being also of a solid material in which acoustic waves can be propagated in two orthogonal shear mode components.
    Type: Grant
    Filed: March 19, 1987
    Date of Patent: May 3, 1988
    Assignee: Canadian Patents and Development Limited - Societe Canadienne Des Brevets et D'Exploitation Limitee
    Inventors: Cheng-Kuei Jen, Gerald W. Farnell, Ahmad Safaai-Jazi