Patents by Inventor Ahmed Bouzid

Ahmed Bouzid has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11543639
    Abstract: Dual mode imaging systems and methods for macroscopic and microscopic imaging using the same optical imaging system (OIS). The various embodiments enable controllable and/or automated switching between macroscopic imaging and microscopic imaging modes. A dual mode imaging system includes a sample platform movable relative to an OIS between first and second locations, and a light source subsystem configured to generate and project an illumination beam onto a focal plane. When in the first location, the sample platform coincides with the focal plane, and the OIS receives light from the sample platform along a first detection light path. When in the second location, the illumination beam interacts with relay optics and impinges on the sample platform through an objective lens, and the light from the sample platform is directed back through the objective lens and relay optics to the OIS via the first detection path.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: January 3, 2023
    Assignee: Li-Cor, Inc.
    Inventor: Ahmed Bouzid
  • Patent number: 11441944
    Abstract: Systems and methods for controlling optical feedback in an optical system. A resonant optical cavity includes at least two cavity mirrors, one of which is a cavity coupling mirror, and has a plurality of optical resonance cavity modes. A radiation source emits a beam of continuous wave radiation and is capable of being scanned whereby a mean optical frequency of the continuous wave radiation beam is adjustable over a range of frequencies, wherein the radiation source is responsive to optical feedback radiation emerging from the cavity, and wherein the mode matching optics couples the beam of continuous wave radiation to the cavity via the cavity coupling mirror. The radiation source and the mode matching optics are aligned so that a mode fill ratio is reduced relative to a maximum mode fill ratio, wherein the laser beam is coupled with a fundamental cavity mode.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: September 13, 2022
    Assignee: Li-Cor, Inc.
    Inventor: Ahmed Bouzid
  • Patent number: 10816395
    Abstract: Filter wheel assemblies with a single actuation point to control positioning of front and rear optical filter elements simultaneously and to provide high channel density with a plurality of selectable optical filter pairs. A filter wheel assembly may include a plurality of optical filter element pairs arranged around a common axis, wherein each of the plurality of optical filter element pairs includes a first filter element and a complementary filter element, wherein each first filter element and each complementary filter element has a surface having a normal component directed toward an inner portion of the filter wheel assembly.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: October 27, 2020
    Assignee: I-COR, Inc.
    Inventors: Andrew George Ragatz, Christopher Lesiak, Irma Nicholls, Mark Fiedler, Ahmed Bouzid
  • Publication number: 20200241269
    Abstract: Dual mode imaging systems and methods for macroscopic and microscopic imaging using the same optical imaging system (OIS). The various embodiments enable controllable and/or automated switching between macroscopic imaging and microscopic imaging modes. A dual mode imaging system includes a sample platform movable relative to an OIS between first and second locations, and a light source subsystem configured to generate and project an illumination beam onto a focal plane. When in the first location, the sample platform coincides with the focal plane, and the OIS receives light from the sample platform along a first detection light path. When in the second location, the illumination beam interacts with relay optics and impinges on the sample platform through an objective lens, and the light from the sample platform is directed back through the objective lens and relay optics to the OIS via the first detection path.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 30, 2020
    Inventor: Ahmed Bouzid
  • Publication number: 20200220332
    Abstract: Systems for combining multi-mode (MM) and single-mode (SM) illumination beams of differing wavelengths together and creating a uniform, multi-wavelength laser line at a sample plane with minimal or no loss of optical power. A system includes correction optics configured to reduce the beam waist size of the MM illumination beam to substantially the same size as the beam waist size of the SM illumination beam, and beam-combining optics configured to combine the SM illumination beam and the MM illumination beam into a combined illumination beam along a first light path.
    Type: Application
    Filed: January 6, 2020
    Publication date: July 9, 2020
    Inventors: Irma Nicholls, Ahmed Bouzid, Christopher Leiak
  • Publication number: 20200149963
    Abstract: Systems and methods for controlling optical feedback in an optical system having a radiation source optically coupled via mode matching optics with a resonant optical cavity. The cavity includes at least two cavity mirrors, one of which is a cavity coupling mirror, and has a plurality of optical resonance cavity modes, wherein the radiation source emits a beam of continuous wave radiation and is capable of being scanned whereby a mean optical frequency of the continuous wave radiation beam is adjustable over a range of frequencies, wherein the radiation source is responsive to optical feedback radiation emerging from the cavity, and wherein the mode matching optics couples the beam of continuous wave radiation to the cavity via the cavity coupling mirror. The radiation source and the mode matching optics are aligned so that a mode fill ratio is reduced relative to a maximum mode fill ratio, wherein for the maximum mode-fill ratio the laser beam is coupled with a fundamental cavity mode.
    Type: Application
    Filed: January 3, 2020
    Publication date: May 14, 2020
    Inventor: Ahmed Bouzid
  • Publication number: 20200149957
    Abstract: Filter wheel assemblies with a single actuation point to control positioning of front and rear optical filter elements simultaneously and to provide high channel density with a plurality of selectable optical filter pairs. A filter wheel assembly may include a plurality of optical filter element pairs arranged around a common axis, wherein each of the plurality of optical filter element pairs includes a first filter element and a complementary filter element, wherein each first filter element and each complementary filter element has a surface having a normal component directed toward an inner portion of the filter wheel assembly.
    Type: Application
    Filed: November 13, 2019
    Publication date: May 14, 2020
    Inventors: Andrew George Ragatz, Christopher Lesiak, Irma Nicholls, Mark Fielder, Ahmed Bouzid
  • Patent number: 10527492
    Abstract: Systems and methods for controlling optical feedback in an optical system having a radiation source optically coupled via mode matching optics with a resonant optical cavity. The cavity includes at least two cavity mirrors, one of which is a cavity coupling mirror, and has a plurality of optical resonance cavity modes, wherein the radiation source emits a beam of continuous wave radiation and is capable of being scanned whereby a mean optical frequency of the continuous wave radiation beam is adjustable over a range of frequencies, wherein the radiation source is responsive to optical feedback radiation emerging from the cavity, and wherein the mode matching optics couples the beam of continuous wave radiation to the cavity via the cavity coupling mirror. The radiation source and the mode matching optics are aligned so that a mode fill ratio is reduced relative to a maximum mode fill ratio, wherein for the maximum mode-fill ratio the laser beam is coupled with a fundamental cavity mode.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: January 7, 2020
    Assignee: LI-COR, Inc.
    Inventor: Ahmed Bouzid
  • Publication number: 20180335344
    Abstract: Systems and methods for controlling optical feedback in an optical system having a radiation source optically coupled via mode matching optics with a resonant optical cavity. The cavity includes at least two cavity mirrors, one of which is a cavity coupling mirror, and has a plurality of optical resonance cavity modes, wherein the radiation source emits a beam of continuous wave radiation and is capable of being scanned whereby a mean optical frequency of the continuous wave radiation beam is adjustable over a range of frequencies, wherein the radiation source is responsive to optical feedback radiation emerging from the cavity, and wherein the mode matching optics couples the beam of continuous wave radiation to the cavity via the cavity coupling mirror. The radiation source and the mode matching optics are aligned so that a mode fill ratio is reduced relative to a maximum mode fill ratio, wherein for the maximum mode-fill ratio the laser beam is coupled with a fundamental cavity mode.
    Type: Application
    Filed: May 16, 2017
    Publication date: November 22, 2018
    Inventor: Ahmed Bouzid
  • Patent number: 9809842
    Abstract: Systems, devices, and methods for accurately imaging chemiluminescence and other luminescence are disclosed. A compact, flat-bed scanner having a light-tight enclosure, one or more detector bars of linear charge-coupled device (CCD) or complementary metal oxide semiconductor (CMOS) imaging chips, and high working numerical aperture (NA) optics scans closely over a sample in one direction and then the opposite direction. Averages or other combinations of intensity readings for each pixel location (x, y) between the two or more passes are averaged together in order to compensate for luminescence that varies over time. On-chip pixel binning and multiple clock frequencies can be used to maximize the signal to noise ratio in a CCD-based scanner.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: November 7, 2017
    Assignee: LI-COR, Inc.
    Inventors: Ahmed Bouzid, Chris Lesiak, Daniel W. Konz, David L. Franzen, William Biggs, Jon P. Anderson
  • Patent number: 9746420
    Abstract: Systems and methods for producing background-reduced fluorescence imaging signals include an illumination system that provides illumination light from an illumination source to a targeted area on the sample platform, a sensor adapted to detect light and having an array of sensing locations, and collection optics arranged and configured to project light emanating from the sample platform onto the sensor. In typical operation, light from the targeted area is projected onto a first portion of the sensor comprising a first plurality of the sensing locations and light from proximal to the targeted area on the platform is projected onto a second portion of the sensor comprising a second plurality of the sensing locations, and a second signal detected by the second portion of the sensor is subtracted from a first signal detected by the first portion of the sensor to produce a background-reduced signal, e.g., a signal with reduced background related noise.
    Type: Grant
    Filed: September 14, 2015
    Date of Patent: August 29, 2017
    Assignee: Li-Cor, Inc.
    Inventor: Ahmed Bouzid
  • Patent number: 9541750
    Abstract: Wide-field fluorescence imaging systems and methods. A bi-telecentric optical imaging system comprising imaging optics arranged and positioned such that a first telecentric space is created or exists between a sample platform and an entry aperture stop wherein Principal or chief rays from a plurality of field points on the sample platform are parallel to each other when passing through a first filter; and such that a second telecentric space is created or exists between a light detector and an exit aperture stop wherein the Principal or chief rays from the plurality of field points are parallel to each other when passing through a second filter. In this manner, light collected from different points in the field of view pass through the first filter at the same angles and also through the second filter at the same angles to thereby reduce or eliminate angular spectral shifting effects.
    Type: Grant
    Filed: June 23, 2014
    Date of Patent: January 10, 2017
    Assignee: LI-COR, Inc.
    Inventor: Ahmed Bouzid
  • Patent number: 9366630
    Abstract: Quantitative fluorescence imaging systems and methods using angular illumination to obtain automatic focus information. Laser scanning (e.g., point or line scanning) with angular illumination in combination with an area imaging sensor, such as with a bi-telcentric scanner, is used to determine sample height (relative to a detection axis orthogonal to a platform holding the sample) and also correct for sample height in subsequent scans.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: June 14, 2016
    Assignee: LI-COR, Inc.
    Inventors: Ahmed Bouzid, Chris Lesiak
  • Publication number: 20160069808
    Abstract: Quantitative fluorescence imaging systems and methods using angular illumination to obtain automatic focus information. Laser scanning (e.g., point or line scanning) with angular illumination in combination with an area imaging sensor, such as with a bi-telcentric scanner, is used to determine sample height (relative to a detection axis orthogonal to a platform holding the sample) and also correct for sample height in subsequent scans.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 10, 2016
    Inventors: Ahmed BOUZID, Chris LESIAK
  • Publication number: 20160003739
    Abstract: Systems and methods for producing background-reduced fluorescence imaging signals include an illumination system that provides illumination light from an illumination source to a targeted area on the sample platform, a sensor adapted to detect light and having an array of sensing locations, and collection optics arranged and configured to project light emanating from the sample platform onto the sensor. In typical operation, light from the targeted area is projected onto a first portion of the sensor comprising a first plurality of the sensing locations and light from proximal to the targeted area on the platform is projected onto a second portion of the sensor comprising a second plurality of the sensing locations, and a second signal detected by the second portion of the sensor is subtracted from a first signal detected by the first portion of the sensor to produce a background-reduced signal, e.g., a signal with reduced background related noise.
    Type: Application
    Filed: September 14, 2015
    Publication date: January 7, 2016
    Inventor: Ahmed Bouzid
  • Publication number: 20150370058
    Abstract: Wide-field fluorescence imaging systems and methods. A bi-telecentric optical imaging system comprising imaging optics arranged and positioned such that a first telecentric space is created or exists between a sample platform and an entry aperture stop wherein Principal or chief rays from a plurality of field points on the sample platform are parallel to each other when passing through a first filter; and such that a second telecentric space is created or exists between a light detector and an exit aperture stop wherein the Principal or chief rays from the plurality of field points are parallel to each other when passing through a second filter. In this manner, light collected from different points in the field of view pass through the first filter at the same angles and also through the second filter at the same angles to thereby reduce or eliminate angular spectral shifting effects.
    Type: Application
    Filed: June 23, 2014
    Publication date: December 24, 2015
    Applicant: LI-COR, Inc.
    Inventor: Ahmed BOUZID
  • Patent number: 9134241
    Abstract: Systems and methods for producing background-reduced fluorescence imaging signals include an illumination system that provides illumination light from an illumination source to a targeted area on the sample platform, a sensor adapted to detect light and having an array of sensing locations, and collection optics arranged and configured to project light emanating from the sample platform onto the sensor. In typical operation, light from the targeted area is projected onto a first portion of the sensor comprising a first plurality of the sensing locations and light from proximal to the targeted area on the platform is projected onto a second portion of the sensor comprising a second plurality of the sensing locations, and a second signal detected by the second portion of the sensor is subtracted from a first signal detected by the first portion of the sensor to produce a background-reduced signal, e.g., a signal with reduced background related noise.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: September 15, 2015
    Assignee: LI-COR, INC.
    Inventor: Ahmed Bouzid
  • Publication number: 20140206568
    Abstract: Systems, devices, and methods for accurately imaging chemiluminescence and other luminescence are disclosed. A compact, flat-bed scanner having a light-tight enclosure, one or more detector bars of linear charge-coupled device (CCD) or complementary metal oxide semiconductor (CMOS) imaging chips, and high working numerical aperture (NA) optics scans closely over a sample in one direction and then the opposite direction. Averages or other combinations of intensity readings for each pixel location (x, y) between the two or more passes are averaged together in order to compensate for luminescence that varies over time. On-chip pixel binning and multiple clock frequencies can be used to maximize the signal to noise ratio in a CCD-based scanner.
    Type: Application
    Filed: March 24, 2014
    Publication date: July 24, 2014
    Applicant: LI-COR, Inc.
    Inventors: Ahmed Bouzid, Chris Lesiak, Daniel W. Konz, David L. Franzen, William Biggs, Jon P. Anderson
  • Patent number: 8743241
    Abstract: Systems and methods are described for extending the dynamic range of imaging systems, and more particularly fluorescence or luminescence imaging systems, having low optical background and a linear detector response. Images of a sample at each of a set of exposure times are acquired, a system-level dark estimate for each exposure time is subtracted from each image to form dark-corrected images, and the different exposures (dark-corrected images) are merged into a wider dynamic-range image. Typically merging is performed on a pixel-by pixel basis.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: June 3, 2014
    Assignee: LI-COR, Inc.
    Inventors: Christopher J. Lesiak, Ahmed Bouzid, David Franzen
  • Patent number: 8722346
    Abstract: Systems, devices, and methods for accurately imaging chemiluminescence and other luminescence are disclosed. A compact, flat-bed scanner having a light-tight enclosure, one or more detector bars of linear charge-coupled device (CCD) or complementary metal oxide semiconductor (CMOS) imaging chips, and high working numerical aperture (NA) optics scans closely over a sample in one direction and then the opposite direction. Averages or other combinations of intensity readings for each pixel location (x, y) between the two or more passes are averaged together in order to compensate for luminescence that varies over time. On-chip pixel binning and multiple clock frequencies can be used to maximize the signal to noise ratio in a CCD-based scanner.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: May 13, 2014
    Assignee: Li-Cor, Inc.
    Inventors: Ahmed Bouzid, Chris Lesiak, Daniel W. Konz, David L. Franzen, William Biggs, Jon P. Anderson