Patents by Inventor Ahmed Elmallah

Ahmed Elmallah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11950934
    Abstract: Described herein is a front-end for a neural recording system that boosts input impedance of the front-end circuit. The front-end includes an amplifier and two choppers. A first input terminal of the first chopper may be coupled to a first output terminal from one or more signal sensors. A first input terminal of the second chopper may be coupled to a second output terminal from the signal sensors. A second input terminal of the first chopper may be coupled to a first output terminal of a feedback subsystem. A second input terminal of the second chopper may be coupled to a second output terminal of the feedback subsystem. The output terminals of each chopper may each be coupled to a different capacitor such that after switching, the voltage of each capacitor remains substantially the same, improving the input impedance of the circuit.
    Type: Grant
    Filed: June 17, 2020
    Date of Patent: April 9, 2024
    Assignee: VERILY LIFE SCIENCES LLC
    Inventors: Ahmed Elmallah, James Salvia
  • Patent number: 9013233
    Abstract: In a high-performance interface circuit for micro-electromechanical (MEMS) inertial sensors, an excitation signal (used to detect capacitance variation) is used to control the value of an actuation signal bit stream to allow the dynamic range of both actuation and detection paths to be maximized and to prevent folding of high frequency components of the actuation bit stream due to mixing with the excitation signal. In another aspect, the effects of coupling between actuation signals and detection signals may be overcome by performing a disable/reset of at least one of and preferably both of the detection circuitry and the MEMS detection electrodes during actuation signal transitions. In a still further aspect, to get a demodulated signal to have a low DC component, fine phase adjustment may be achieved by configuring filters within the sense and drive paths to have slightly different center frequencies and hence slightly different delays.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: April 21, 2015
    Assignee: Si-Ware Systems
    Inventors: Ahmed Elmallah, Ahmed Elshennawy, Ahmed Shaban, Botros George, Mostafa Elmala, Ayman Ismail, Mostafa Sakr, Ahmed Mokhtar, Ayman Elsayed
  • Patent number: 8508290
    Abstract: In a high-performance interface circuit for micro-electromechanical (MEMS) inertial sensors, an excitation signal (used to detect capacitance variation) is used to control the value of an actuation signal bit stream to allow the dynamic range of both actuation and detection paths to be maximized and to prevent folding of high frequency components of the actuation bit stream due to mixing with the excitation signal. In another aspect, the effects of coupling between actuation signals and detection signals may be overcome by performing a disable/reset of at least one of and preferably both of the detection circuitry and the MEMS detection electrodes during actuation signal transitions. In a still further aspect, to get a demodulated signal to have a low DC component, fine phase adjustment may be achieved by configuring filters within the sense and drive paths to have slightly different center frequencies and hence slightly different delays.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: August 13, 2013
    Inventors: Ayman Elsayed, Ahmed Elmallah, Ahmed Elshennawy, Ahmed Shaban, Botros George, Mostafa Elmala, Ayman Ismail, Mostafa Sakr, Ahmed Mokhtar
  • Patent number: 8476970
    Abstract: In a high-performance interface circuit for micro-electromechanical (MEMS) inertial sensors, an excitation signal (used to detect capacitance variation) is used to control the value of an actuation signal bit stream to allow the dynamic range of both actuation and detection paths to be maximized and to prevent folding of high frequency components of the actuation bit stream due to mixing with the excitation signal. In another aspect, the effects of coupling between actuation signals and detection signals may be overcome by performing a disable/reset of at least one of and preferably both of the detection circuitry and the MEMS detection electrodes during actuation signal transitions. In a still further aspect, to get a demodulated signal to have a low DC component, fine phase adjustment may be achieved by configuring filters within the sense and drive paths to have slightly different center frequencies and hence slightly different delays.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: July 2, 2013
    Inventors: Ahmed Mokhtar, Ahmed Elmallah, Ahmed Elshennawy, Ahmed Shaban, Botros George, Mostafa Elmala, Ayman Ismail, Mostafa Sakr, Ayman Elsayed
  • Publication number: 20120235724
    Abstract: In a high-performance interface circuit for micro-electromechanical (MEMS) inertial sensors, an excitation signal (used to detect capacitance variation) is used to control the value of an actuation signal bit stream to allow the dynamic range of both actuation and detection paths to be maximized and to prevent folding of high frequency components of the actuation bit stream due to mixing with the excitation signal. In another aspect, the effects of coupling between actuation signals and detection signals may be overcome by performing a disable/reset of at least one of and preferably both of the detection circuitry and the MEMS detection electrodes during actuation signal transitions. In a still further aspect, to get a demodulated signal to have a low DC component, fine phase adjustment may be achieved by configuring filters within the sense and drive paths to have slightly different center frequencies and hence slightly different delays.
    Type: Application
    Filed: September 13, 2011
    Publication date: September 20, 2012
    Inventors: Ahmed Mokhtar, Ahmed Elmallah, Ahmed Elshennawy, Ahmed Shaban, Botros George, Mostafa Elmala, Ayman Ismail, Mostafa Sakr, Ayman Elsayed
  • Publication number: 20120235725
    Abstract: In a high-performance interface circuit for micro-electromechanical (MEMS) inertial sensors, an excitation signal (used to detect capacitance variation) is used to control the value of an actuation signal bit stream to allow the dynamic range of both actuation and detection paths to be maximized and to prevent folding of high frequency components of the actuation bit stream due to mixing with the excitation signal. In another aspect, the effects of coupling between actuation signals and detection signals may be overcome by performing a disable/reset of at least one of and preferably both of the detection circuitry and the MEMS detection electrodes during actuation signal transitions. In a still further aspect, to get a demodulated signal to have a low DC component, fine phase adjustment may be achieved by configuring filters within the sense and drive paths to have slightly different center frequencies and hence slightly different delays.
    Type: Application
    Filed: September 13, 2011
    Publication date: September 20, 2012
    Inventors: Ahmed Elmallah, Ahmed Elshennawy, Ahmed Shaban, Botros George, Mostafa Elmala, Ayman Ismail, Mostafa Sakr, Ahmed Mokhtar, Ayman Elsayed
  • Publication number: 20120235726
    Abstract: In a high-performance interface circuit for micro-electromechanical (MEMS) inertial sensors, an excitation signal (used to detect capacitance variation) is used to control the value of an actuation signal bit stream to allow the dynamic range of both actuation and detection paths to be maximized and to prevent folding of high frequency components of the actuation bit stream due to mixing with the excitation signal. In another aspect, the effects of coupling between actuation signals and detection signals may be overcome by performing a disable/reset of at least one of and preferably both of the detection circuitry and the MEMS detection electrodes during actuation signal transitions. In a still further aspect, to get a demodulated signal to have a low DC component, fine phase adjustment may be achieved by configuring filters within the sense and drive paths to have slightly different center frequencies and hence slightly different delays.
    Type: Application
    Filed: September 13, 2011
    Publication date: September 20, 2012
    Inventors: Ayman Elsayed, Ahmed Elmallah, Ahmed Elshennawy, Ahmed Shaban, Botros George, Mostafa Elmala, Ayman Ismalt, Mostafa Sakr, Ahmed Mokhtar