Patents by Inventor Ahmed Hussein Badran

Ahmed Hussein Badran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124863
    Abstract: Some aspects of this disclosure provide methods for phage-assisted continuous evolution (PACE) of proteases. Some aspects of this invention provide methods for evaluating and selecting protease inhibitors based on the likelihood of the emergence of resistant proteases as determined by the protease PACE methods provided herein. Some aspects of this disclosure provide strategies, methods, and reagents for protease PACE, including fusion proteins for translating a desired protease activity into a selective advantage for phage particles encoding a protease exhibiting such an activity and improved mutagenesis-promoting expression constructs. Evolved proteases that recognize target cleavage sites which differ from their canonical cleavage site are also provided herein.
    Type: Application
    Filed: August 3, 2023
    Publication date: April 18, 2024
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Bryan Dickinson, Michael S. Packer, Ahmed Hussein Badran
  • Patent number: 11913040
    Abstract: Engineered transcriptional activator-like effectors (TALEs) are versatile tools for genome manipulation with applications in research and clinical contexts. One current drawback of TALEs is that the 5? nucleotide of the target is specific for thymine (T). TALE domains with alternative 5? nucleotide specificities could expand the scope of DNA target sequences that can be bound by TALEs. Another drawback of TALEs is their tendency to bind and cleave off-target sequence, which hampers their clinical application and renders applications requiring high-fidelity binding unfeasible. This disclosure provides methods and strategies for the continuous evolution of proteins comprising DNA-binding domains, e.g., TALE domains. In some aspects, this disclosure provides methods and strategies for evolving such proteins under positive selection for a desired DNA-binding activity and/or under negative selection against one or more undesired (e.g., off-target) DNA-binding activities.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: February 27, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Basil Hubbard, Ahmed Hussein Badran
  • Patent number: 11760986
    Abstract: Some aspects of this disclosure provide methods for phage-assisted continuous evolution (PACE) of proteases. Some aspects of this invention provide methods for evaluating and selecting protease inhibitors based on the likelihood of the emergence of resistant proteases as determined by the protease PACE methods provided herein. Some aspects of this disclosure provide strategies, methods, and reagents for protease PACE, including fusion proteins for translating a desired protease activity into a selective advantage for phage particles encoding a protease exhibiting such an activity and improved mutagenesis-promoting expression constructs. Evolved proteases that recognize target cleavage sites which differ from their canonical cleavage site are also provided herein.
    Type: Grant
    Filed: December 16, 2020
    Date of Patent: September 19, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Bryan Dickinson, Michael S. Packer, Ahmed Hussein Badran
  • Publication number: 20230220016
    Abstract: The disclosure provides amino acid sequence variants of Bacillus thuringiensis (Bt) toxins and methods of producing the same. Some aspects of this disclosure provide methods for generating Bt toxin variants by continuous directed evolution. Some aspects of this disclosure provide compositions and methods for pest control using the disclosed variant Bt toxins.
    Type: Application
    Filed: October 26, 2022
    Publication date: July 13, 2023
    Applicants: President and Fellows of Harvard College, Monsanto Company
    Inventors: David R. Liu, Ahmed Hussein Badran, Victor Guzov, Tom Malvar, Prashanth Vishwanath, Jeff Nageotte, Qing Huai, Melissa Kemp
  • Patent number: 11624130
    Abstract: Some aspects of this disclosure relate to systems, apparatuses, compositions (e.g., isolated nucleic acids and vectors), and methods for improving the stability and/or solubility of proteins evolved using phage-assisted continuous evolution (PACE). In some embodiments, vectors described herein comprise nucleic acids encoding selection systems (e.g., positive and/or negative selection systems) that link expression of genes required for production of infectious phage particles to a desirable physiochemical (e.g., stability or solubility) and/or desired function of an evolved protein.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: April 11, 2023
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Ahmed Hussein Badran, Tina Wang
  • Patent number: 11524983
    Abstract: The disclosure provides amino acid sequence variants of Bacillus thuringiensis (Bt) toxins and methods of producing the same. Some aspects of this disclosure provide methods for generating Bt toxin variants by continuous directed evolution. Some aspects of this disclosure provide compositions and methods for pest control using the disclosed variant Bt toxins.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: December 13, 2022
    Assignees: President and Fellows of Harvard College, Monsanto Company
    Inventors: David R. Liu, Ahmed Hussein Badran, Victor Guzov, Tom Malvar, Prashanth Vishwanath, Jeff Nageotte, Qing Huai, Melissa Kemp
  • Publication number: 20220267754
    Abstract: Strategies, reagents, methods, and systems for modulating the mutation rate in cells are provided herein. The strategies, reagents, methods, and systems are broadly applicable for the modulation of mutation rates in cells where high mutation rates and/or control over a broad range of mutation rates is desired, for example, in the context of diversifying a nucleic acid sequence or a plurality of such sequences within a population of cells, for the generation of diversified nucleic acid libraries, and for directed evolution of nucleic acids and encoded products.
    Type: Application
    Filed: January 21, 2022
    Publication date: August 25, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: Ahmed Hussein Badran, David R. Liu
  • Patent number: 11299729
    Abstract: Strategies, reagents, methods, and systems for modulating the mutation rate in cells are provided herein. The strategies, reagents, methods, and systems are broadly applicable for the modulation of mutation rates in cells where high mutation rates and/or control over a broad range of mutation rates is desired, for example, in the context of diversifying a nucleic acid sequence or a plurality of such sequences within a population of cells, for the generation of diversified nucleic acid libraries, and for directed evolution of nucleic acids and encoded products.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: April 12, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: Ahmed Hussein Badran, David R. Liu
  • Publication number: 20210403887
    Abstract: Engineered transcriptional activator-like effectors (TALEs) are versatile tools for genome manipulation with applications in research and clinical contexts. One current drawback of TALEs is that the 5? nucleotide of the target is specific for thymine (T). TALE domains with alternative 5? nucleotide specificities could expand the scope of DNA target sequences that can be bound by TALEs. Another drawback of TALEs is their tendency to bind and cleave off-target sequence, which hampers their clinical application and renders applications requiring high-fidelity binding unfeasible. This disclosure provides methods and strategies for the continuous evolution of proteins comprising DNA-binding domains, e.g., TALE domains. In some aspects, this disclosure provides methods and strategies for evolving such proteins under positive selection for a desired DNA-binding activity and/or under negative selection against one or more undesired (e.g., off-target) DNA-binding activities.
    Type: Application
    Filed: June 23, 2021
    Publication date: December 30, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Basil Hubbard, Ahmed Hussein Badran
  • Publication number: 20210238569
    Abstract: Some aspects of this disclosure provide methods for phage-assisted continuous evolution (PACE) of proteases. Some aspects of this invention provide methods for evaluating and selecting protease inhibitors based on the likelihood of the emergence of resistant proteases as determined by the protease PACE methods provided herein. Some aspects of this disclosure provide strategies, methods, and reagents for protease PACE, including fusion proteins for translating a desired protease activity into a selective advantage for phage particles encoding a protease exhibiting such an activity and improved mutagenesis-promoting expression constructs. Evolved proteases that recognize target cleavage sites which differ from their canonical cleavage site are also provided herein.
    Type: Application
    Filed: December 16, 2020
    Publication date: August 5, 2021
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Bryan Dickinson, Michael S. Packer, Ahmed Hussein Badran
  • Patent number: 11078469
    Abstract: Engineered transcriptional activator-like effectors (TALEs) are versatile tools for genome manipulation with applications in research and clinical contexts. One current drawback of TALEs is that the 5? nucleotide of the target is specific for thymine (T). TALE domains with alternative 5? nucleotide specificities could expand the scope of DNA target sequences that can be bound by TALEs. Another drawback of TALEs is their tendency to bind and cleave off-target sequence, which hampers their clinical application and renders applications requiring high-fidelity binding unfeasible. This disclosure provides methods and strategies for the continuous evolution of proteins comprising DNA-binding domains, e.g., TALE domains. In some aspects, this disclosure provides methods and strategies for evolving such proteins under positive selection for a desired DNA-binding activity and/or under negative selection against one or more undesired (e.g., off-target) DNA-binding activities.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: August 3, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Basil Hubbard, Ahmed Hussein Badran
  • Patent number: 10920208
    Abstract: Some aspects of this disclosure provide methods for phage-assisted continuous evolution (PACE) of proteases. Some aspects of this invention provide methods for evaluating and selecting protease inhibitors based on the likelihood of the emergence of resistant proteases as determined by the protease PACE methods provided herein. Some aspects of this disclosure provide strategies, methods, and reagents for protease PACE, including fusion proteins for translating a desired protease activity into a selective advantage for phage particles encoding a protease exhibiting such an activity and improved mutagenesis-promoting expression constructs. Evolved proteases that recognize target cleavage sites which differ from their canonical cleavage site are also provided herein.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: February 16, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Bryan Dickinson, Michael S. Packer, Ahmed Hussein Badran
  • Publication number: 20200385724
    Abstract: The invention, in part, includes compositions comprising quadruplet decoding tRNAs and their encoding sequences. The invention also includes assay methods to assess quadruplet decoding as well as methods of preparing quadruplet decoding suppression tRNAs.
    Type: Application
    Filed: June 5, 2020
    Publication date: December 10, 2020
    Inventors: Ahmed Hussein Badran, Erika Alden DeBenedictis, Kevin Michael Esvelt
  • Publication number: 20200277587
    Abstract: Engineered transcriptional activator-like effectors (TALEs) are versatile tools for genome manipulation with applications in research and clinical contexts. One current drawback of TALEs is that the 5? nucleotide of the target is specific for thymine (T). TALE domains with alternative 5? nucleotide specificities could expand the scope of DNA target sequences that can be bound by TALEs. Another drawback of TALEs is their tendency to bind and cleave off-target sequence, which hampers their clinical application and renders applications requiring high-fidelity binding unfeasible. This disclosure provides methods and strategies for the continuous evolution of proteins comprising DNA-binding domains, e.g., TALE domains. In some aspects, this disclosure provides methods and strategies for evolving such proteins under positive selection for a desired DNA-binding activity and/or under negative selection against one or more undesired (e.g., off-target) DNA-binding activities.
    Type: Application
    Filed: February 28, 2020
    Publication date: September 3, 2020
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Basil Hubbard, Ahmed Hussein Badran
  • Publication number: 20200216833
    Abstract: Some aspects of this disclosure relate to systems, apparatuses, compositions (e.g., isolated nucleic acids and vectors), and methods for improving the stability and/or solubility of proteins evolved using phage-assisted continuous evolution (PACE). In some embodiments, vectors described herein comprise nucleic acids encoding selection systems (e.g., positive and/or negative selection systems) that link expression of genes required for production of infectious phage particles to a desirable physiochemical (e.g., stability or solubility) and/or desired function of an evolved protein.
    Type: Application
    Filed: September 18, 2018
    Publication date: July 9, 2020
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Ahmed Hussein Badran, Tina Wang
  • Patent number: 10612011
    Abstract: Engineered transcriptional activator-like effectors (TALEs) are versatile tools for genome manipulation with applications in research and clinical contexts. One current drawback of TALEs is that the 5? nucleotide of the target is specific for thymine (T). TALE domains with alternative 5? nucleotide specificities could expand the scope of DNA target sequences that can be bound by TALEs. This disclosure provides methods and strategies for the continuous evolution of proteins comprising DNA-binding domains, e.g., TALE domains. In some aspects, this disclosure provides methods and strategies for evolving such proteins under positive selection for a desired DNA-binding activity and/or under negative selection against one or more undesired (e.g., off-target) DNA-binding activities. Some aspects of this disclosure provide engineered TALE domains and TALEs comprising such engineered domains, e.g.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: April 7, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Basil Hubbard, Ahmed Hussein Badran
  • Publication number: 20190256842
    Abstract: Strategies, systems, methods, reagents, and kits for phage-assisted continuous evolution are provided herein. These include strategies, systems, methods, reagents, and kits allowing for stringency modulation to evolve weakly active or inactive biomolecule variants, negative selection of undesired properties, and/or positive selection of desired properties.
    Type: Application
    Filed: January 2, 2019
    Publication date: August 22, 2019
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Jacob Charles Carlson, Ahmed Hussein Badran, Kevin Michael Esvelt
  • Patent number: 10179911
    Abstract: Strategies, systems, methods, reagents, and kits for phage-assisted continuous evolution are provided herein. These include strategies, systems, methods, reagents, and kits allowing for stringency modulation to evolve weakly active or inactive biomolecule variants, negative selection of undesired properties, and/or positive selection of desired properties.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: January 15, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Jacob Charles Carlson, Ahmed Hussein Badran, Kevin Michael Esvelt
  • Publication number: 20180237758
    Abstract: Engineered transcriptional activator-like effectors (TALEs) are versatile tools for genome manipulation with applications in research and clinical contexts. One current drawback of TALEs is that the 5? nucleotide of the target is specific for thymine (T). TALE domains with alternative 5? nucleotide specificities could expand the scope of DNA target sequences that can be bound by TALEs. This disclosure provides methods and strategies for the continuous evolution of proteins comprising DNA-binding domains, e.g., TALE domains. In some aspects, this disclosure provides methods and strategies for evolving such proteins under positive selection for a desired DNA-binding activity and/or under negative selection against one or more undesired (e.g., off-target) DNA-binding activities. Some aspects of this disclosure provide engineered TALE domains and TALEs comprising such engineered domains, e.g.
    Type: Application
    Filed: July 28, 2016
    Publication date: August 23, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: David R. Liu, Basil Hubbard, Ahmed Hussein Badran
  • Publication number: 20180087046
    Abstract: Strategies, reagents, methods, and systems for modulating the mutation rate in cells are provided herein. The strategies, reagents, methods, and systems are broadly applicable for the modulation of mutation rates in cells where high mutation rates and/or control over a broad range of mutation rates is desired, for example, in the context of diversifying a nucleic acid sequence or a plurality of such sequences within a population of cells, for the generation of diversified nucleic acid libraries, and for directed evolution of nucleic acids and encoded products.
    Type: Application
    Filed: April 15, 2016
    Publication date: March 29, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: Ahmed Hussein Badran, David R. Liu