Patents by Inventor Ahmed M. Gharib

Ahmed M. Gharib has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240012077
    Abstract: The present disclosure is directed to a motor for a magnetic resonance (MR) tomography room, to a patient table for the MR room, to a MR elastography device, and to a MR tomography device. A MR tomography device for a MR elastography imaging protocol is arranged within the MR tomography room, and includes a rotational drive for supplying rotational energy to power a MR elastography transducer usable during the MR elastography imaging protocol, and a support structure. The rotational drive comprises a terminal for connecting the MR elastography transducer to the rotational drive, and a bearing means configured such that the position of the terminal relative to the support structure is adaptable along a trajectory predetermined by the bearing means. The rotational drive is mounted to the support structure via the bearing means.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 11, 2024
    Inventors: Giacomo Annio, Verena Müller-Reinwald, Ralph Sinkus, Omar Darwish, Wilfried Schnell, Tamara Elisabeth Falkner, Ahmed M. Gharib
  • Patent number: 11852704
    Abstract: The present disclosure is directed to a motor for a magnetic resonance (MR) tomography room, to a patient table for the MR room, to a MR elastography device, and to a MR tomography device. A MR tomography device for a MR elastography imaging protocol is arranged within the MR tomography room, and includes a rotational drive for supplying rotational energy to power a MR elastography transducer usable during the MR elastography imaging protocol, and a support structure. The rotational drive comprises a terminal for connecting the MR elastography transducer to the rotational drive, and a bearing means configured such that the position of the terminal relative to the support structure is adaptable along a trajectory predetermined by the bearing means. The rotational drive is mounted to the support structure via the bearing means.
    Type: Grant
    Filed: March 17, 2022
    Date of Patent: December 26, 2023
    Assignees: Siemens Healthcare GmbH, Centre National de la Recherche Scientifique (CNRS), Institut National de La Sante et de la Recherche Medicale (INSERM), King's College London, Department of Health and Human Services, UNIV PARIS XIII PARIS-NORD VILLETANEUSE, Universite de Paris
    Inventors: Giacomo Annio, Verena Muller-Reinwald, Ralph Sinkus, Omar Darwish, Wilfried Schnell, Tamara Elisabeth Falkner, Ahmed M. Gharib
  • Patent number: 11821972
    Abstract: The present disclosure is directed to techniques for synchronizing a rotational eccentric mass of a gravitational transducer used for a magnetic resonance elastography acquisition with a corresponding magnetic resonance elastography scan carried out by a magnetic resonance imaging system, wherein the rotation of the eccentric mass is driven by a shaft. The method includes starting the rotation of the eccentric mass at a set vibration frequency and the magnetic resonance elastography scan at a set acquisition frequency; determining the rotational position of the shaft; defining the rotational position as first reference position; calculating further reference positions. At the start time of each subsequent acquisition period, determining the current rotational position of the shaft; comparing the determined current rotational position with the theoretically expected reference position and decreasing or increasing the rotational speed of the rotational eccentric mass based on the comparison.
    Type: Grant
    Filed: March 23, 2022
    Date of Patent: November 21, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: Omar Darwish, Radhouene Neji, Ahmed M. Gharib, Ralph Sinkus
  • Publication number: 20230305090
    Abstract: The present disclosure is directed to techniques for synchronizing a rotational eccentric mass of a gravitational transducer used for a magnetic resonance elastography acquisition with a corresponding magnetic resonance elastography scan carried out by a magnetic resonance imaging system, wherein the rotation of the eccentric mass is driven by a shaft. The method includes starting the rotation of the eccentric mass at a set vibration frequency and the magnetic resonance elastography scan at a set acquisition frequency; determining the rotational position of the shaft; defining the rotational position as first reference position; calculating further reference positions. At the start time of each subsequent acquisition period, determining the current rotational position of the shaft; comparing the determined current rotational position with the theoretically expected reference position and decreasing or increasing the rotational speed of the rotational eccentric mass based on the comparison.
    Type: Application
    Filed: March 23, 2022
    Publication date: September 28, 2023
    Inventors: Omar Darwish, Radhouene Neji, Ahmed M. Gharib, Ralph Sinkus
  • Publication number: 20230296708
    Abstract: The present disclosure is directed to a motor for a magnetic resonance (MR) tomography room, to a patient table for the MR room, to a MR elastography device, and to a MR tomography device. A MR tomography device for a MR elastography imaging protocol is arranged within the MR tomography room, and includes a rotational drive for supplying rotational energy to power a MR elastography transducer usable during the MR elastography imaging protocol, and a support structure. The rotational drive comprises a terminal for connecting the MR elastography transducer to the rotational drive, and a bearing means configured such that the position of the terminal relative to the support structure is adaptable along a trajectory predetermined by the bearing means. The rotational drive is mounted to the support structure via the bearing means.
    Type: Application
    Filed: March 17, 2022
    Publication date: September 21, 2023
    Inventors: Giacomo Annio, Verena Muller-Reinwald, Ralph Sinkus, Omar Darwish, Wilfried Schnell, Tamara Elisabeth Falkner, Ahmed M. Gharib
  • Patent number: 11464413
    Abstract: One aspect of the present subject matter provides an imaging method including: receiving a trigger signal; after a period substantially equal to a trigger delay minus an inversion delay, applying a non-selective inversion radiofrequency pulse to a region of interest followed by a slice-selective reinversion radiofrequency pulse to a slice of the region of interest of a subject; and after lapse of the trigger delay commenced at the cardiac cycle signal, acquiring a plurality of time-resolved images of the slice of the region of interest from an imaging device.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: October 11, 2022
    Assignee: The United States of America as represented by Secretary, Department of Health and Human Services
    Inventors: Khaled Z. Abd-Elmoniem, Ahmed M. Gharib, Roderic I. Pettigrew
  • Publication number: 20150223703
    Abstract: One aspect of the present subject matter provides an imaging method including: receiving a trigger signal; after a period substantially equal to a trigger delay minus an inversion delay, applying a non-selective inversion radiofrequency pulse to a region of interest followed by a slice-selective reinversion radiofrequency pulse to a slice of the region of interest of a subject; and after lapse of the trigger delay commenced at the cardiac cycle signal, acquiring a plurality of time-resolved images of the slice of the region of interest from an imaging device.
    Type: Application
    Filed: August 21, 2013
    Publication date: August 13, 2015
    Applicant: The United States of America as reprensented by Secretary, Department of Health and Human Services
    Inventors: Khaled Z. Abd-Elmoniem, Ahmed M. Gharib, Roderic I. Pettigrew